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Dedication of Proceedings 
to 

PROFESSOR ANTHONY EDWARD PERRY 

1937-2001 

We would like to dedicate this Special Proceedings Issue to Professor Anthony Perry of 
Melbourne University, Australia. Tony has contributed with many well-known papers, 
several of them considered classics, to the fields of fluid mechanics and aerodynamics 
through both the experimental and theoretical approaches. He published extensively, and 
gave wonderfully original and entertaining presentations in studies of turbulence and 
structure-based modelling approaches, elegant use of scaling arguments, flow pattern 
topology, three-dimensional separation and vortex shedding processes. I still remember the 
first time I met Tony, as part of the great team of Tony and Chong, when they both turned up 
at a lunch party at Anatol Roshko's house in Pasadena, in the Fall of 1984.1 had only just 
arrived at Caltech, and was not 
sure who was who in the world 
of fluid mechanics, but quickly 
realized Tony was one of the 
very best. What a wonderful ex- 
perience it was to meet Tony 
and Min Chong and to go hik- 
ing with them in the hills behind 
Anatol's house. Tony's energy, 
joie de vivre and engaging sense 
of humour were infectious, and 
these aspects were always there 
through the intervening years. 
And so it was with the utmost 
pleasure that we welcomed 
Tony, and indeed Min Chong, 
as invited speakers to our 
IUTAM Conference in Carry- 
Le-Rouet in June 2000. We 
never suspected, based on the 
incredible level of noise, laugh- 
ter, and liquid consumption at 
the "Australian table" at our 
conference banquet in the port 
of Marseille, that Tony would 
now not be with us. This vol- 
ume of work is dedicated to the 
memory of a great scientist, and 
warm-hearted fellow. 

CHARLES H. K. WILLIAMSON 

11 January 2001 

Tony Perry at Trinity College, Cambridge (1999) 
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PREFACE 

The present Special Issue makes up the Proceedings of the IUTAM Symposium on Bluff 
Body Wakes and Vortex-Induced Vibrations held at Carry-le-Rouet (near Marseille), 
France, 13-16 June 2000. This is the second conference on this subject in recent years, the 
first conference (BBVIV-1) having been held in Washington, DC, in June 1998; the Marseille 
conference was thus given the acronym BBVIV-2. The papers in this volume were selected 
by the Scientific Committee from amongst the oral presentations made at the Symposium. 
The Symposium itself attracted 100 participants from 18 countries and, apart from a few 
who were unable to be present, gathered together the most active researchers in the field. 
The scientific programme included 8 invited lectures, 38 oral presentations and 22 poster 
presentations. People responsible for the posters were given a few minutes each to make 
a short presentation on their work. A total of 91 abstracts had been received, and these were 
reviewed by the Scientific Committee and the Chairmen. It was agreed by all present that 
the general standard of the presentations and the scientific level achieved were high. 

The complete set of abstracts, of both oral and poster presentations, were provided to all 
participants at the conference site. A detailed list of all presentations is included in a later 
section of these Proceedings. The topical sessions at the conference had the following titles: 

• Wake Fundamentals (4 talks of 20 minutes, 6 poster presentations) 
• Vortex-Induced Vibrations (6 talks, 2 posters) 
• Forced Oscillations (3 talks, 5 posters) 
• Sphere Wakes (5 talks, 3 posters) 
• Three-dimensional Effects (4 talks) 
• Three-dimensional Instability (4 talks) 
• Wake Manipulation (3 talks, 3 posters) 
• Wake Control (4 talks, 3 posters) 
• Flexible Structures (5 talks) 

One of the main purposes of the Symposium was to bring together people working on the 
wakes of fixed bluff bodies with those studying vortex-induced vibrations of bluff bodies. 
Papers on the wake structure of fixed bluff bodies were divided into two main areas: those 
dealing with two-dimensional shapes, or those with only small amounts of three-dimen- 
sionality, and those on spheres. Presentations were almost equally divided between experi- 
mental and computational work and several addressed the question of vortex shedding 
control, both passive and active. There were separate sessions on theoretical aspects with 
a number of presenters following the interesting non-linear model equation approach, 
showing that they were able to predict many of the physical features. 

Vortex-induced vibration (VIV) is a subject that has been around for a long time, and key 
parameters include structural damping and mass ratio, i.e. the mass of the structure to the 
mass of displaced fluid. The flow can be studied by considering bluff bodies forced to 
oscillate, or elastically-mounted bluff bodies free to oscillate, and presentations on both 
approaches were given at the conference. Much is known about VIV of structures in air 
where mass ratios are high. Offshore oil production has stimulated an interest in large 
amplitude VIV for cylinders with mass ratios near unity. A number of new phenomena have 
been observed, including different modes of shedding, and distinct branches to the response 
curve of amplitude versus normalized velocity. For low mass ratios, the so-called "added 
mass component" provided by the fluid has a significant effect on oscillation frequency and 
is found to vary with normalized velocity, as might be expected. These findings provoked 
extensive and remarkably lively discussion at the conference on the meaning of "added 
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mass" and whether it should be considered in its ideal flow sense, or whether it should be 
defined as the component of the total fluid force in phase with acceleration. 

A significant outcome of the meeting was the recognition of the advances being made by 
computational fluid dynamics (CFD). It was demonstrated that considerable insight can be 
provided by applying CFD to an idealized cylinder experiment with some combination of 
the mass, damping and stiffness equated to zero. Direct simulations of three-dimensional 
modes of shedding are now possible, and this prompted some discussion as to what role 
they play in determining the amplitude of VIV. Others argued that VIV imposes order on 
the wake and that two-dimensional codes should be adequate for predicting VIV, although 
at least one researcher showed that distinctly different VIV responses ensued, depending on 
whether a 2-D or 3-D direct simulation is used. An intriguing result, which was known 
before the symposium, but reaffirmed at the meeting, is that CFD codes are having great 
difficulty in predicting the maximum amplitude of oscillation when the combined mass and 
damping parameter is low. There was much speculation as to why this is. One researcher, 
using turbulence modelling, had found that the maximum response could be predicted 
if the flow speed in the computation was very slowly raised, as might happen in some 
of the experiments. Others, who had tried the same approach, could not attain large 
enough amplitudes. As the mass and damping tend to zero, the phase angle (by which the 
transverse fluid force leads the displacement) becomes extremely small, and to predict 
maximum amplitudes, this angle has to be found to a very high degree of accuracy. 

Predicting maximum amplitude remains one of the challenges facing CFD specialists. In 
addition to those mentioned above, important new results were displayed on a number of 
other topics, including: sphere wakes, wakes of cylinders at or near a free surface, flow 
around multiple cylinders, and the extraction of energy from bluff body wakes. 

It must be mentioned that much of the present stimulus for research on fixed bluff bodies 
over the last 10 years, and the strong resurgence of investigations into vortex-induced 
vibration over the last 5 years, have come from the focussed support program of the Ocean 
Engineering Division of the U.S. Office of Naval Research, monitored by Dr Tom Swean. 
Their support has provided a strong impetus for the two conferences on Bluff Body Wakes 
and Vortex-Induced Vibration (BBVIV-1 and BBVIV-2), and in both cases, the ONR have 
provided funds for publication and availability of the Proceedings. 

This IUTAM Symposium was held in a resort hotel complex directly on the coast, which 
possessed a sufficient level of isolation to ensure that the scientific sessions were always very 
well attended. The hospitality and meals provided by the hotel were excellent, and they 
played a significant part in bringing the participants together for many interesting dis- 
cussions. In the Chairman's final remarks of the conference, it was mentioned that the food 
was so superb and plentiful, that it gave new meaning to the expression "added mass", upon 
which so much debate had been focussed. Immense thanks are due to all those involved in 
the local organization of the event for setting up so many of the essential details for the 
success of the conference. One can say with confidence that everybody was able to leave the 
meeting with some new research ideas to follow up. 

T. Leweke 
P. W. Bearman 

C. H. K. Williamson 

Marseille, January 2001 
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Opening Address 

FLUID MECHANICS IN THE COMING CENTURY 

TOMOMASA TATSUMI 

IUTAM Bureau Member - International Institute for Advanced Studies, Kyoto, Japan 

IUTAM. The present Symposium on "Bluff Body Wakes and Vortex-Induced Vibrations" 
is one of the "IUTAM Symposia", which are sponsored by the International Union of 
Theoretical and Applied Mechanics (IUTAM). Actually, this subject has been selected from 
many proposals made by various research groups in the world and adopted by the General 
Assembly of IUTAM. Another important activity of IUTAM is to organize the "Interna- 
tional Congresses of Theoretical and Applied Mechanics" (ICTAM), which are held every 
4 years in various cities in the world. The most recent ICTAM held in France was the 17th 
Congress in 1988, Grenoble, and one of the last was the 19th Congress held in 1996, Kyoto, 
Japan. Then, in the year of 2000, the 20th Congress was held in Chicago, U.S.A. 

Mechanics of Viscous Fluid. The present century may be characterized by the great 
progress in mechanics of the "viscous fluid" governed by the Navier-Stokes equation. Until 
the last century, fluid mechanics has mostly been concerned with the "inviscid fluid". 
Although the mathematical theory due to the Euler equation supplied us with useful 
mathematical results and elegant theorems for fluid motions, it often caused serious 
discrepancy from the physical reality such as functional singularities in the solutions and the 
d'Alembert's paradox of vanishing drag for moving bodies. A big revolution has been 
achieved around the last turn of the century by two epoch-making works of O. Reynolds 
(1894) on "turbulent flows" and L. Prandtl (1904) on the "boundary layer". The classifica- 
tion of the real viscous flows in terms of the magnitude of Reynolds number Re = UL/v, 
U and L being the velocity and the length-scales of the flow and v the kinematic viscosity of 
the fluid, and introduction of suitable analytical and numerical methods for the correspond- 
ing magnitude of Re, enabled us to obtain mathematical solutions of the Navier-Stokes 
equation for almost all fluid flows of theoretical or practical significance. 

Mechanics of Turbulence. An obvious exception from the above optimistic summary is 
"turbulent flows", including the subject of the present Symposium. In spite of great 
advances in turbulence research during this Century initiated by the "statistical theory" of 
Sir Geoffrey Taylor (1935) and the "local equilibrium theory" of A.N. Kolmogorov (1941) 
and largely helped by the rapid progress in high-speed numerical computation, the theory is 
still lacking theoretical unity and much more works have to be done in the coming Century 
before the theory is accomplished as the "mechanics of turbulence". 

Fluid Mechanics in the Coming Century. The great success of mechanics of the "viscous 
fluid" developed during this century has resulted in a rich variety of engineering applica- 
tions, including the subject of the present Symposium, "Bluff Body Wakes and Vortex- 
Induced Vibrations". Such a tendency will be pushed even further toward the next century. 
The study of more "complex" fluid flows associated with thermal convection, combustion, 
phase change, chemical reaction, nuclear and thermo-nuclear reactions, which have already 
been included in applied fields of the present fluid mechanics, will certainly constitute the 
central part of the fluid mechanics in the coming century. The fluid dynamical problems 
may not be limited to engineering subjects, but they will be extended to fluid phenomena in 
other fields such as biological and life science, space and cosmic science, and environmental 
and energy technologies. Theoretically speaking, the enlargement of the subjects to huge 
scales such as environmental, global, planetary or even cosmical phenomena opens a novel 
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scope of fluid mechanics. Just like modern fluid mechanics has been largely supported by 
the developments in molecular physics of matter, the fluid mechanics of huge-scale phe- 
nomena must be built up on the theoretical basis of contemporary fluid mechanics of 
human scale. Even a brief survey as stated above may be sufficient to guarantee a rich and 
fascinating future for Fluid Mechanics in the coming century. 
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The presence of flow separation from both leading and trailing edges of elongated bluff bodies 
leads to vortex interactions and resonances not observed in shorter bodies such as circular and 
square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to- 
thickness ratio has been observed for long bodies in a number of different situations: natural 
shedding, under transverse forcing, and with excited duct modes. In the present study, an 
investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, 
to thickness, t, ratio c/t = 16). The two main types of plate geometry considered are rectangular 
plates and plates with an aerodynamic leading edge. The rectangular plate represents a geomet- 
rical extension of the normal flat and square plates. The aerodynamic leading-edge plate is 
a natural precursor to the rectangular plate because the vortex shedding is only from the 
trailing edge. The natural flow around rectangular plates is of greater complexity due to the 
interaction between the leading- and trailing-edge shedding. The previously neglected influence 
of the trailing-edge vortex shedding is found to play an important role in the stepwise 
progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of 
three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake 
is predicted. The predicted boundary layer hairpin vortices are compared with previous 
observations and the predicted streamwise modes in the wake are compared with those found in 
the case of circular cylinders. © 2001 Academic Press 

1. INTRODUCTION 

THE FLOW around elongated bluff bodies, even of simple geometries such as rectangular 
plates, can result in a number of different local instabilities. Moreover, the complexity of the 
flow is increased as a result of interaction between upstream and downstream flow 
structures and the interaction of flow and solid structures. These interactions can lead to 
global instabilities arising in the flow. In this paper, we explore some of the different two- 
and three-dimensional instabilities that occur in flow around two-dimensional blunt plates 
at relatively low Reynolds number. 

Instability in the wake is present in most bluff bodies above a critical Reynolds number. 
With long bluff bodies, it is possible for the flow to separate at the leading edge and reattach 
while shedding large-scale vortices. A detailed investigation into the nature of this separated 
and reattaching flow is found in Cherry et al. (1984). Two instabilities are involved: the 
Kelvin-Helmholtz instability present in the shear layer; and the instability causing the 
large-scale shedding. In combination, there is a weak flapping of the shear layer and an 
irregularity of shedding. Experiments by Soria et al. (1993) used long rectangular plates to 
isolate any trailing edge effects. The separating and reattaching flow was shown to be 
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predominantly convectively unstable and receptive to a broad range of frequencies. The 
weak flapping of the shear layer without external perturbation could be the result of regions 
of local absolute instabilities. 

Another type of global instability occurs when a local convective instability interacts with 
a solid boundary downstream. Disturbances from the object downstream propagate up- 
stream to complete a feedback loop. For a rectangular plate, this phenomenon is observed 
when the shear layer from the leading edge is influenced by the trailing edge. This type of 
instability is similar to when jet or mixing layers impinge on some downstream geometry, 
for example a bluff body, wall or sharp edge. A comprehensive review is found in Rockwell 
& Naudascher (1979). The concept of global instability was associated with these sorts of 
flows by Rockwell (1990). 

The flow around rectangular plates in the absence of any external forcing has been 
studied previously both experimentally and numerically (Nakamura et al. 1991; Ohya et al. 
1992). The vortex shedding from the leading edge of the plate generally locked to a single 
frequency at low Reynolds numbers [up to Re ~ 3000, Nakamura et al. (1991)]. This 
instability was thought to rely on the interaction of the leading-edge vortices with the 
trailing edge to generate a pressure pulse. This pulse locks the leading-edge shedding and 
completes the feedback loop. The pressure pulse is relatively weak and therefore this locked 
response is restricted to low Reynolds numbers and only a limited range of chord-to- 
thickness ratios. It was initially classified as an impinging shear layer (ISL) instability by 
Nakamura & Nakashima (1986) and Nakamura et al. (1991) because in some cases (where 
the chord-to-thickness ratios were low), the shear layer directly interacted with the trailing 
edge; this has similarities with the instability in cavity flows. Later studies (Naudascher 
& Wang 1993; Hourigan et al. 1993; Naudascher & Rockwell 1994; Mills et al. 1995; Mills 
1998; Tan et al. 1998) preferred the description impinging leading-edge vortex (ILEV) 
instability because it better describes the process wherein leading-edge vortices are shed, 
convected downstream and then interact with the trailing edge. A result of this instability is 
the occurrence of distinct integer shedding modes (denoted by n, the number of pairs of 
vortices distributed along the plate at any time). Observationally, as the plate chord-to- 
thickness ratio is increased, the Strouhal number of vortex shedding based on chord (Stc) 
shows a stepwise response with each subsequent step corresponding to a higher shedding mode. 

In the studies undertaken previously on the natural shedding modes for elongated plates, 
the presence of trailing-edge vortex shedding was generally not observed or included in 
discussions. In the case of Ohya et al. (1992) where it was observed, the trailing-edge 
shedding was not considered to be part of the feedback loop but merely led to contamina- 
tion of the downstream wake. The present study approaches the problem of natural 
shedding modes from a different perspective in order to establish the importance of 
trailing-edge shedding to the self-sustained oscillations. As a starting point, the case of 
a blunt plate with an aerodynamic leading edge is investigated numerically to understand 
the trailing-edge shedding in the absence of upstream vortex interference. Then, the 
two-dimensional flow around rectangular plates is studied with a view to understanding 
the role of the leading-edge vortices in interfering with the trailing-edge shedding and the 
occurrence of frequency stepping. Finally, some predictions are undertaken to confirm 
the continued presence of trailing-edge vortex shedding and the locking of the vortex 
shedding when extended to three dimensions. In addition, the formation of three-dimen- 
sional patterns in the boundary layer along the plate, and in the trailing-edge wake, are 
investigated. The boundary layer hairpin vortical structures are compared with those from 
the experiments of Sasaki & Kiya (1991) and the predicted streamwise modes in the wake 
are compared with those found in the case of circular cylinders (Williamson 1988; 
Thompson et al. 1996; Barkley & Henderson 1996). 
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2. NUMERICAL METHOD 

The wake of a fixed circular cylinder has been well characterised over the transition region 
(Reynolds number ranging from 180 to 300). Following the pioneering numerical work of 
Karniadakis & Triantafyllou (1992), Thompson et al. (1994, 1996) first predicted the 
wavelengths of both wake Modes, A and B, and validated those against the rigorous 
measurements of Williamson (1988). The spectral-element method used in that study was 
employed in the current study. The spectral-element method is a high-order finite-element 
approach. Within each element, the nodes correspond to Gauss-Lobatto points and 
Gauss-Legendre-Lobatto quadrature is used to approximate the integrations over ele- 
ments resulting from the application of the Galerkin finite-element method to the 
Navier-Stokes equations. For high-order elements, this approach is far more economical 
than equispaced nodes, while still maintaining the spectral convergence rate. 

The time-stepping method used was a classical three-step approach described by 
Karniadakis et al. (1991). In the spanwise direction for the three-dimensional predictions, 
a Fourier expansion was used, resulting in the equations decoupling for each Fourier mode. 

The conditions applied at the boundaries of the computational domain were: (i) no slip on 
the plate; (ii) zero normal velocity derivative at the outflow boundary; and (iii) on the side 
and inflow boundary, the velocity was taken as uniform in the horizontal direction. 
A typical computational mesh displaying the macro-elements employed for the elliptical 
leading-edge plate is shown in Figure I. 

Before the detailed investigation into the flow around long plates was undertaken, some 
preliminary simulations were performed to determine an adequate domain size and resolu- 
tion. For flow around bluff bodies, the predictions of surface pressure can be significantly 
altered if the boundaries are too close to the body (Barkley & Henderson 1996). The 
two-dimensional simulations were intended to produce quantitative predictions of base 
pressure and forces on the plate and therefore some preliminary simulations were per- 
formed to determine an adequate domain size. The resolution was confirmed to be adequate 
(to within 2%) by performing simulations with higher spatial and temporal resolution. 

3. RESULTS AND DISCUSSION 

Figure 2 shows schematics of the long plates studied together with their associated flow 
features. The flow around plates with only trailing-edge vortex shedding was investigated as 
a precursor to the study of flows around rectangular plates. 

3.1. FLOW AROUND ELLIPTICAL LEADING-EDGE PLATES 

The shedding frequency predicted by the simulation was compared with the results 
obtained experimentally by Eisenlohr & Eckelmann (1988). Simulations were performed for 
a plate with c/t = 7-5 between Re = 200 and 700; the leading edge was semi-elliptical with 
a 5:1 axes ratio. The shedding frequency was extracted from the base pressure trace, which 
in all these cases asymptoted to a periodic state. 

Eisenlohr & Eckelmann (1988) found a correlation between the reduced shedding 
frequency (iy) and the Reynolds number (Re,-) if the characteristic length was taken as the 
plate thickness plus twice the displacement thickness at the trailing edge. The simulations 
were in good agreement with these results (see Figure 3). The plots show that the rate of 
increase of Fr with Ret. is visually indistinguishable between the predictions and experi- 
ments. The predicted Fr at all but the lowest Reynolds number simulated were within the 
range of experimental uncertainty. This demonstrated that the simulation was able to 



390 K. HOURIGAN ET AL. 

/ \ 

\ / 

Figure 1. The computational mesh showing the macro-elements for an elliptical leading-edge plate with 
c/t = 7-5. 

Leading edge shedding 
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Figure 2. A sketch of the vortical flow structures for flow past an elliptical leading-edge plate and a rectangular 
plate. 

capture most of the experimental trends; differences may have been due to the much 
longer plates and higher Reynolds numbers (resulting in three dimensionality) used in the 
experiments. 

3.2. LEADING- AND TRAILING-EDGE SHEDDING: RECTANGULAR PLATES 

3.2.1. Simulation results 

Several simulations were performed to study the effect of Reynolds number. Flow around 
plates with chord-to-thickness ratios of c/t = 3 and 10 were simulated at Re = 300,400 and 
500. All simulations with c/t = 3 locked to the first shedding mode (n = 1) while at c/t = 10, 
the flow locked to the third shedding mode (n = 3) when Re = 300 and 400. At Re = 400, 
there were small fluctuations between periods in the base pressure trace and at Re = 500, 
the flow no longer locked to a particular shedding mode; there were several frequencies 
present in the base pressure trace. When the flow was locked to a particular mode, varying 
the Reynolds number had only a small influence on the shedding frequency (i.e., less than 
10%). Nakamura et al. (1991) also found that the shedding frequency was independent of 
Reynolds number when this mechanism locked the flow. The base pressure trace showed 
that the mean and standard deviation increased with Reynolds number for all cases where 
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Figure 3. A plot of the nondimensional shedding frequency, F,,, as a function of the Reynolds number Re,, for 
the flow around an elliptical leading-edge plate with c/t = 7-5. The correlation obtained from experiments by 
Eisenlohr & Eckelmann (1988) is plotted for comparison. The shaded region is indicative of the spread in the 

experimental data. 

the flow was locked. There was a drop in the mean and standard deviation when the 
Reynolds number was increased and the flow no longer locked to a shedding mode. 

Next, the chord-to-thickness ratio was systematically varied in unit increments from 
c/t = 3 to 16 at Re = 400. The flow locked to a shedding mode for each c/t between 3 and 10 
and also at c/t = 13. Vorticity plots in Figure 4 show that for c/t = 3-5, the vortex shedding 
locked to n = 1; for c/t = 6-8, it locked to n = 2; for c/t = 9 and 10, it locked to n = 3; and 
for c/t = 13, it locked to n = 4. The Strouhal number based on chord approximately 
corresponds to St, = 0-55« for all these cases. The factor 0-55 represents the mean convec- 
tion velocity, normalized by the free-stream velocity, of the vortices along the plate. The 
base pressure trace in Figure 5 shows a higher level of fluctuation between periods towards 
the higher chord-to-thickness ratio end of each shedding mode. The spectrum taken from 
the base pressure trace when c/t = 11 (not locked) was found to contain three frequencies, 
one corresponding to the n = 3 shedding mode, another to a frequency that was in the 
middle of the n = 2 and 3 shedding mode, plus a third corresponding to the nonlinear 
interaction between these two modes. 

The effect of the global instability is also seen in the variation of the base pressure and 
forces on the plate (see Figure 6). The mean base suction and drag forces are generally 
higher at the lower c/t end of the step and decrease with c/t. This trend continues even to 
chord-to-thickness ratios that no longer lock to a single frequency. The standard deviation 
of lift coefficient varies approximately in inverse proportion to c/t. 

Animations of the predicted pressure fields show that the large stepwise changes in the 
base pressure as the plate chord-to-thickness ratio is increased are due to the return of 
strong trailing-edge vortex shedding. With increasing chord-to-thickness ratio, the leading- 
edge vortices are increasingly diffused by the time they reach the trailing edge. When the 
flow is strongly locked, the leading-edge vortices move almost parallel to the plate into the 
wake. The dominant fluctuation in pressure at the trailing edge is due to the intense 
formation and shedding of trailing-edge vortices. An instantaneous plot of the pressure field 
of the locked flow for c/t = 10 is shown in Figure 7. At the trailing edge, more intense 
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Figure 4. Vorticity plots of flow around rectangular plates at Re = 400 taken at approximately the same phase 
in the shedding cycle for the various chord-to-thickness ratios. 

structures are seen to be forming and shedding while the more diffuse leading-edge vortices 
pass over the top and are merged further downstream. For all the chord-to-thickness ratios, 
the trailing-edge vortex shedding provided the strong pressure fluctuations at the trailing 
edge while the leading-edge vortices sometimes acted to frustrate the regularity of this 
shedding. 

3.2.2. On the controlling mechanism 

Previous studies and classification associated with the flow around long rectangular plates 
did not include the important role of shedding from the trailing edge (Nakamura et al. 1991; 
Ozono et al. 1992; Naudascher & Wang 1993). In the current simulations, although weak 
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Figure 5. A sample c 

pressure fluctuations would occur when the leading-edge vortices pass the trailing edge, 
strong base shedding is also observed leading to more significant pressure fluctuations. This 
is seen in the large mean and fluctuating components in base pressure. A description of the 
different feedback processes for bluff bodies is shown in Figure 8. For short bodies, the 
leading-edge shear layer can impinge directly on the trailing edge. For longer bodies, 
vortices are shed from the shear layer at the leading edge. These vortices convect along the 
plate and interact with the trailing edge. For bodies with streamlined trailing edges [for 
example, the h section and a wide variety of bluff bodies such as cylinders and square 
sections fitted with splitter plates (Nakamura 1996)], the leading-edge vortices generate 
a pressure pulse as they pass the trailing edge. However, for the bodies with bluff trailing 
edges as in the present case, the leading-edge vortices interact with the shedding at the 
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Figure 6. Mean base pressure coefficient, Cp, mean drag coefficient, Cd, and standard deviation of lift coefficient, 
<TC„ as a function of the chord-to-thickness ratio for flow around rectangular plates at Re = 400. The circular 
symbols represent cases where the flow shows an association with a particular shedding mode while the squares 

represent the cases where the flow is not strictly locked to any one shedding mode. 

trailing edge. That is, trailing-edge vortices can only form between the passing of leading- 
edge vortices. Vortices at the trailing edge form from the redeveloped thin boundary layer 
between vortices, in a manner similar to their formation for the elliptical leading-edge case. 
The leading-edge vortices punctuate the redeveloped boundary layer and restrict the phases 
at which trailing-edge shedding can occur. The pressure pulse from the vigorous base 
shedding then feeds back upstream and controls the leading-edge shedding. The global 
instability in this case, therefore, consists of a combination of impinging leading-edge vortex 
shedding (ILEV) and trailing-edge vortex shedding (TEVS). 

3.3. THREE-DIMENSIONAL SIMULATIONS 

A limited number of three-dimensional flow simulations were performed to study the 
transitional states for flow around elliptical leading-edge and rectangular plates. The 
Reynolds numbers in these simulations were chosen to be slightly in excess of the values at 
which transition from two- to three-dimensional flow occurs. In the aerodynamic leading- 
edge plate case, the transition in the wake was examined. The spanwise instability of 
leading-edge vortices was the focus in simulations involving rectangular plates. The nature 
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Figure 7. Instantaneous pressure field for a plate 
with c/t = 10. Blue indicates lower pressure, generally 
indicative of vortex structures, and red higher pres- 

sure. 

Figure 9. Isosurface plots for predicted flow (left to 
right) past an elliptical leading-edge plate with 
c/t = 2-5 for Re = 300 (top) and Re = 380 (bottom). 
The nondimensionalized values of the kinematic pres- 
sure (blue) are - 0-25 (top) and - 0-20 (bottom), and 
the streamwise vorticity (red and gray) ±1-0 (top) 

and ± 1-2 (bottom). 

Figure 10. Isosurface plot for predicted flow (left to 
right) around a rectangular plate with c/t = 13 at 
Re = 350 viewed from the top. The normalized value 
of the isosurface of kinematic pressure is at — 0-15 
and the values of the streamwise vorticity are at 
+ 0-8. Note that the simulated spanwise domain 

has been doubled for this visualization (and also for 
Figure 9). 

Figure 11. Vorticity plots of flow past a rectangular 
plate with c/t = 10 and Re = 350. The top plot, (a), 
shows span-averaged vorticity from a three-dimen- 
sional simulation. The bottom plot, (b), shows the 
corresponding vorticity field from a two-dimensional 
simulation. Opposite-signed vorticity is coloured red 

and blue. 
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Figure 8. Schematic of feedback loops of locked vortex shedding for blunt leading-edge plates with either blunt 
or streamlined trailingedges. 

of the technique used here enforced periodic boundary conditions on the spanwise bound- 
aries. This allowed only discrete spanwise wavelengths (which is more restrictive for 
instabilities of longer wavelengths) to be captured. 

3.3.1. Elliptical leading-edge plates 

Simulations were performed for the flow around elliptical leading-edge plates with a 5:1 
axes ratio and ratios of c/t = 7-5 and 2-5. Two spanwise wake shedding modes were 
observed similar to Modes A and B for a circular cylinder (Williamson 1988). The spanwise 
wavelengths in the current simulations were generally larger for these plates possibly due to 
the thicker boundary layers near the trailing edge and the resulting vortices being more 
diffused. 

Simulations with c/t = 2-5 have captured the two shedding modes in the transition 
process. The simulation captured a long wavelength flow structure at Re = 300 with 
topology consistent with Mode A shedding (see Figure 9). As only one wavelength of this 
flow structure was captured within the domain (2nt), there is some uncertainty as to which is 
the most unstable wavelength. There are smaller wavelengths that develop in certain 
shedding cycles. This could be either a competition between shedding modes or a result of 
the restrictive domain. At Re = 350, Mode A shedding is suppressed and the presence of 
some (streamwise vortical) flow structures consistent with Mode B shedding is apparent. 
The wavelength of these structures is uncertain because they are sporadic and not uniform 
across the span. When the Reynolds number is increased to Re = 380, these structures 
become more intense and more regular (also see Figure 9). These flow structures have 
a spanwise wavelength of approximately 0-8f. The simulations were able to capture 
three-dimensional vortical structures with topology similar to Mode A at Re = 500 and 
c/t = 7-5. 
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3.3.2. Rectangular plates 

The flows around rectangular plates with c/t = 6,10 and 13 were simulated at Re = 350 and 
400. No boundary layer spanwise instability was observed in the simulations with c/t = 6. 
Flow structures similar to those classified as Pattern B by Sasaki & Kiya (1991) were 
observed when c/t = 10 and 13 at both Re = 350 (see Figure 10) and 400. These were 
hairpin-like structures arranged in a staggered manner on both sides of the plate. In all 
cases, two wavelengths were captured in the domain and therefore the spanwise wavelength 
was approximately 3t. (Again, because of the discrete Fourier mode description, there is 
some uncertainty in this estimate.) The streamwise wavelengths were approximately 3t 
when c/t = 10 and At when c/t = 13. Both the streamwise and spanwise wavelengths are 
within the range of experimental uncertainty of those observed experimentally (Sasaki 
& Kiya 1991). Pattern A shedding (vortices aligned) has been more difficult to capture, 
possibly due to the shorter plate lengths employed in the simulations. 

3.3.3. Comparison with two-dimensional simulations 

In this section, several flow characteristics of the two- and three-dimensional simulations 
are compared. A motivation for this is to demonstrate that the two-dimensional simulations 
are semi-quantitatively correct even when the flow has undergone transition. The case 
considered here is the flow past a rectangular plate with c/t = 10 and Re = 350. The 
computational domain and resolution on a two-dimensional plane was identical in both 
cases. The Strouhal numbers, St, in the two- and three-dimensional cases were St = 0-170 
and 0T74, respectively. Figure 11 shows a comparison of the two-dimensional flow structures 
between the two- and three-dimensional simulations. The three-dimensional simulation is 
reduced to a two-dimensional plane by averaging across the span. The vorticity plots clearly 
show that both cases are locked to the third, n = 3, shedding mode. The main difference 
between the plots is the more diffuse leading-edge vortices in the three-dimensional case. 
Importantly, from the point of view of the controlling mechanism, as for the two-dimen- 
sional simulation, strong base shedding is also observed with trailing-edge vortices seen to 
form from the redeveloped boundary layer between the passing of leading-edge vortices. 

4. CONCLUSIONS 

A series of simulations of flows around blunt plates have been undertaken to test the 
hypothesis that the trailing-edge shedding plays an important role in the self-sustained 
oscillations observed in flows around rectangular plates. First, the flow around plates of 
different chord-to-thickness ratios, with elliptical leading and square trailing edges, was 
studied. No leading-edge vortex shedding was present and strong periodic trailing-edge 
shedding was found with frequency in line with previous observations. Next, the flow 
around rectangular plates of various chord-to-thickness ratios was investigated. Self- 
sustained oscillations were found to occur which, for most chord-to-thickness ratios, were 
strictly periodic. Distinct vortex shedding from both the leading and trailing edges was 
observed. It is concluded that the preferred frequency of oscillation (i.e., both leading- and 
trailing-edge shedding) is that of the trailing-edge shedding. However, the leading-edge 
vortices punctuate the redeveloped boundary layer on the plate surface from which the 
trailing-edge vortices form. As the plate chord-to-thickness ratio is increased, this results in 
a gradual decrease in the possible trailing-edge shedding frequency until the preferred 
frequency is again possible; at this stage, the frequency undergoes a step change. The 
three-dimensional simulations show three-dimensional structures forming both along the 
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plate surface and in the wake. The span wise-averaged flow, however, shows a distribution of 
structures similar to the two-dimensional flow, including strong trailing-edge vortex shed- 
ding. Pattern B vortical structures along the plate, and Modes A and B structures in the 
wake, each similar to those observed previously experimentally, have been captured by the 

simulations. 
In some other flows where there is an absence of trailing-edge vortex shedding, the 

mechanism leading to self-sustained oscillations may in fact be the feedback loop generated 
by the impinging shear layer or the impinging leading-edge vortices. Although neglected in 
previous studies of flows around rectangular plates, it would appear that the trailing-edge 
shedding is a powerful influence on the self-sustained oscillations observed at lower 
Reynolds numbers. It is concluded in these cases that the global instability is a combination 
of the impinging shear layer instability (ILEV) and the trailing-edge vortex shedding 

instability (TEVS). 
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The separation zone of an inclined flat plate was reduced by bombarding rolling-up vortices in 
the separated shear layer with a chain of vortex rings introduced from the side of the main flow. 
The reduction was realized because a compact and strong vortex is successively formed near the 
leading edge, transporting high-momentum fluid of the main flow towards the surface. Mo- 
mentum defect in the near wake, which serves as a measure of effectiveness of reduction in the 
separation zone and can be approximately interpreted as the drag of the plate, generally 
decreases with increasing frequency of introduction of the rings F and their circulation r, 
saturating at sufficiently large values of F and r. The momentum defect appears to attain 
a minimum at a particular frequency Fc/Uw « 4, where c is the length of the plate and Ux is the 
main-flow velocity. This frequency can be interpreted as the fundamental frequency of the 
shedding-type instability of the separated flow. Efficiency, which is defined as decrease in loss of 
power in the wake divided by the power required to generate the vortex rings, attains 
a maximum approximately at the same frequency Fc/Um « 4, and at a particular value of the 
circulation r/U^c « 0-32, which is approximately 1-6 times the circulation of the shear-layer 
vortices in the region of interaction. Thus, the steady jet which corresponds to F = oo is not the 
best choice in terms of the efficiency. © 2001 Academic Press 

1.   INTRODUCTION 

ACTIVE CONTROL OF SEPARATED FLOWS around bluff bodies has been made by acoustic wave, 
suction or blowing, oscillating flaps, moving surfaces, etc. These methods, except the control 
by acoustic wave, employ actuators installed inside or on the surface of the body. This is not 
always possible in engineering applications. For example, blades of axial-flow compressors 
or blowers are not usually thick enough to install such actuators. Active control of 
separated flow around the blades is of vital importance to improve off-design performance 
of turbomachinery. 

This paper presents a novel method to solve the above problem. In this method 
self-travelling vortices such as vortex rings or vortex pairs are introduced into separated 
shear layers from outside to reduce the separation zone. Figures 1 and 2 are flow visualiz- 
ations which demonstrate the interaction between the external vortices and rolling-up 
vortices in a separated shear layer (Kiya et al, 1986). Note that the vortex ring and the 
vortex pair in these figures are introduced from the low-velocity side of the shear layer. The 
interaction appears to generate rolling-up vortices which are larger than those in the 
undisturbed shear layer. 

The interaction between rolling-up vortices in a plane mixing layer and a vortex pair was 
studied by numerical simulations to understand essential aspects of the vortex interaction 

0889-9746/01/040399 + 15 $35.00/0 © 2001 Academic Press 
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Figure 1. Interaction between a vortex pair and shear-layer vortices (Kiya et al, 1986). Flow is from left to right. 
Main-flow  velocity   [/„ = 2-8 cm/s,  height  of normal  plate   h = 4-3 cm,   circulation  of the   vortex  pair 
r„P/(U«,h) as 0-78, circulation of the shear-layer vortices rshl(U„h) as 0-50 and Reynolds number XJJi/v = 1-2 x 105. 

The time interval between two consecutive photographs is 0-5 s. 

(Kiya et al. 1999). This two-dimensional interaction induces larger vortices than those in the 
undisturbed mixing layer, yielding a significant increase of momentum thickness and 
entrainment rate. Moreover, vortex pairs whose circulation is larger than approximately 2-5 
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Figure 2. Interaction between a vortex ring and shear-layer vortices (Kiya et al, 1986). Flow is from left to right. 
l/K = 3-0 cm/s, h = 4-3 cm, circulation of the vortex ring rj(VJi) « 0-58, rj(U„h) « 0-85 The time interval 

between two consecutive photographs is 0-25 s. 

times the circulation of the mixing-layer vortex pass through the mixing layer, leaving more 
or less the same effect on the mixing-layer vortices. 

A problem of using a vortex pair for the control is that it has a mode of instability 
(Leweke et al. 1996), which degenerates the vortex pair to a series of vortex rings. Thus, in 
engineering applications, the external vortices should be vortex rings. Interaction between 
vortex rings and shear-layer vortices was studied experimentally by Kiya et al. (1986) and 
Maekawa & Nishioka (1992) and numerically by Kiya & Ishii (1988) and Ishikawa et al. 
(2000). In the Ishikawa et al. (2000) simulations, a vortex ring of radius R and core radius of 
0T55.R interacts with a rectilinear vortex tube of the same core radius; the Reynolds number 
based on the diameter 2R and the initial convection velocity of the vortex ring is 300. The 
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simulations revealed that the vortex ring passes through the vortex tube if the circulation of 
the vortex ring is approximately 1-5 times the circulation of the vortex filament. 

In this paper, vortex rings were introduced into the separated shear layer of an inclined 
flat plate to reduce the height of the separation zone. A reduction in the height is expected to 
be accompanied by lower drag and higher lift, and lower level of fluctuating components of 
these forces. Trajectories of vortex rings ejected into the main flow are shown to have 
a similarity for different parameters associated with generation of the vortex rings (Suzuki 
et al. 1999), and this similarity was used to introduce the vortex rings into the separated 
shear layer near the leading edge. Circulation of the vortex rings r and frequency of its 
introduction (shooting frequency) F were changed to obtain conditions of the greatest 
reduction in the separation zone. Momentum defect in the near wake of the plate is 
employed as a measure of effectiveness of the control. Moreover, the mechanism of the 
reduction is discussed in terms of phase-averaged flow visualizations and phase-averaged 
velocity distributions. 

2. EXPERIMENTAL APPARATUS AND METHOD 

Experiments were performed in a low-speed, open-return wind tunnel with a 40-0 cm high, 
20-0 cm wide and 90-0 cm long working section. The flow was introduced into the working 
section through a bell entrance of 1:12-6 contraction. The time-mean velocity in the tunnel 
was uniform within ± 2% in the cross section where the leading edge of a model plate is to 
be located except the boundary layers on the tunnel walls. The free-stream turbulence 
intensity was 0-7%. 

Vortex rings were produced through a circular orifice of diameter d = 5-0 mm, which 
were bored through the top wall of the tunnel in the mid-span plane. This orifice was 
connected to a woofer through a chamber. In the second part of the experiments, which will 
be described in Section 3.3, two orifices of the same dimensions were added 60 d apart, on 
both sides of the above-mentioned orifice; all the five orifices were arranged along a line 
normal to the main-flow direction, being connected to the woofer through the same 
chamber. Thus, five vortex rings of the same circulation and dimensions were generated 
simultaneously. 

The woofer was driven by square-wave input from a power unit. The square wave had 
a period of 2tb; in the first half of the period the woofer was in the phase of ejection flow 
through the orifice, while in the second half the woofer was in the suction phase. 

Circulation of the vortex ring generated during one period was obtained in the following 
way. The cylindrical coordinate (£, a, q>), whose origin is at the centre of the orifice, is 
defined such that £ is the longitudinal distance, a is the radial distance, and q> is the 
azimuthal angle about the axis a = 0. Assuming that the flow in the plane of the orifice is 
axisymmetric, circulation shed per unit time from the edge of the orifice is given by 

I'd/2 

co^da, (1) 
Jd/2-ö 

where <5 is the thickness of the shear layer, w^ = dua/d£ - dujda is the azimuthal compon- 
ent of vorticity, and u4 and ua are the velocity components in the £ and a directions. The 
first term in GO,, is much smaller than the second term, so that we obtain 
(°v

ui = — u^dujda). Thus, noting that the flow in the suction phase had no contribution 
to circulation, the circulation of the vortex ring generated during one period of motion of 
the woofer can be evaluated from 

dT 

~dl 

H 2 

O 
LVj(t)-]2dt, (2) 
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where Vj(t) is the longitudinal velocity component at the edge of the shear layer in the plane 
of the orifice. 

An inclined flat plate of length c = 100 mm was made from an acrylic resin plate of 
2-0 mm in thickness, having the semicircular leading and trailing edges. This form of the 
leading edge was employed to reduce the receptivity of the acoustic wave generated by the 
motion of the woofer. It is possible that the receptivity might influence the rolling up of the 

^ 

Woofer     t 

Hat plate 

Side view 

_>Ori Orifice Flat plate 

6d 

 > 

o 

o 

Plan view 

Figure 3. Flow configuration and definition of coordinate system for active control of separation zone of an 
inclined flat plate by impinging vortex rings. 
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separated shear layer, making it difficult to differentiate its effects on the separation zone 
from those of the vortex rings. The plate was fixed at an attack angle a = 10°, at which the 
flow separated from the leading edge to reattach to the surface near the trailing edge. 

Figure 3 illustrates the flow configuration, and definition of the (x, y, z) coordinate system 
and symbols. The x-axis is in the direction of main flow of velocity 17«,, y is vertically 
upward, and z is in the spanwise direction, the origin being at the leading edge. The distance 
from the suction surface along the y-axis is denoted by /. The instantaneous velocity 
components in the xy-plane and in the x-direction are denoted by q and u, respectively. The 
leading edge of the plate was located 15-Qd below and 25-0d downstream of the centre of the 
orifice from which the vortex rings were generated. 

The velocities were measured by a constant-temperature hot-wire anemometer and 
a Laser-Doppler velocimeter (LDV). A single hot-wire probe of 5 um diameter and working 
length of 1 mm, which was parallel to the z-axis, was used, so that this probe measured the 
velocity component in the (x, y) plane q, whose time-mean value and r.m.s. fluctuations are 
denoted by q and q', respectively. The LDV measured the longitudinal component u, whose 
time-mean value is denoted by ü. 

The vortex rings and their interaction with the separated shear layer were visualized by 
a smoke-wire technique. Smoke wires were tungsten wires of 01 mm diameter with kinks at 
intervals of 2d. Flow-visualization photographs were taken in synchronization with fixed 
phases of generation of the vortex rings. 

Reynolds number Re ( = Uxc/v, v being the kinematic viscosity) was 8300. The main- 
flow velocity was 1-25 m/s. The frequency of introduction of the vortex rings to the 
separated shear layer F was varied in the range of Fc/U^ =0-12, while circulation of the 
vortex rings was in the range of r/(l7«,c) = 0-20-0-66. Circulation of shear-layer vortices 
with which the vortex rings interacted, rsh, was rshl(Umc) = 0-21, as described in Section 3.1. 

3. RESULTS AND DISCUSSION 

3.1. UNDISTURBED FLOW 

Figure 4 shows the flow pattern visualized by smoke particles, the distributions of the 
time-mean velocities q and ü and the r.m.s. velocity fluctuation q' on the suction side of the 
plate. The flow separates from the leading edge to form a separation zone. The distributions 
of M measured by the LDV indicate the reverse flow near the surface. In the reverse-flow 
region, the distributions of q measured by the hot-wire probe has a definite plateau. The 
plateau is generated by the rectification of the velocity signal u in the reverse-flow region. 
Near a position of u = 0, the hot-wire signal is expected to attain a broad minimum because 
the rectification yields a higher signal between this position and the surface. The broad 
minimum looks like a plateau. It may be noted that the hot-wire signal is not zero at the 
position of u = 0 due to effects of natural convection and the turbulent velocity component 
along the probe. Thus, in this paper the plateau is interpreted as an indication of reverse 
flow. On the basis of this interpretation, the separated shear layer appears to reattach on the 
surface near the trailing edge. This is partially supported by the fact that the distribution of 
ü in the near wake at x/c = 1-14 indicates no reverse-flow region. 

Circulation of rolling-up vortices in the undisturbed shear layer rsh can be estimated on 
the basis of the velocity at the edge of the shear layer Us( = 1-2717«, at [/«, = 1-25 m/s) and 
the fundamental frequency of Kelvin-Helmholtz instability fKH = 50 Hz, which was mea- 
sured at x/c = 0-4. As seen in Figure 4, the rolling-up vortex in the shear layer first appears 
between x/c = 0-3 and 0-4. The longitudinal distance between rolling-up vortices near the 
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(b) 

Figure 4. (a) Distributions of time-mean velocities q and w, and r.m.s. velocity fluctuation q', and (b) smoke-wire 
flow visualization for undisturbed separation zone, a = 10° and Re = 8300. O, q/U«,; A, ü/Ux; •, q'/U^,. The 

broken line shows the centre of the shear layer. The scale of the velocities is shown on top of (a). 

leading edge (which will be referred to as KH vortices) is estimated as 
&KH = {Us/2)/fKH{ = 0-16c), with the reasonable assumption that the rolling-up vortices are 
convected by the velocity UJ2. Circulation of the shear layer vortices can be estimated as 
Us times this wavelength, that is, rshl(Uxc) = 0-21. 

3.2. EFFECTS OF VORTEX RINGS ON SEPARATED FLOW 

In order to demonstrate the effects of vortex rings on the shear layer, phase-averaged flow vis- 
ualizations and distributions of phase-averaged velocity q are presented in Figures 5 and 6 
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for the shooting frequency of Fc/U^ = 0-80. The vortex rings were generated only from the 
central orifice; the flow visualizations and the velocity measurements were made in the 
mid-span plane. The phase averaging was made on the basis of waveform of input to the 
woofer. For convenience the phase 0 = 0 is defined as the instant at which the centre of 
a vortex ring arrives at the leading edge of the airfoil, while the phase <f> = 2% is the instant at 
which the next vortex ring arrives at the same position. The velocity distributions and the 
flow visualizations are shown with the interval of A0 = n/3. It may be noted that each 
photograph of Figure 5 is the superposition of 20 realizations; the centre of the vortex ring is 
indicated by solid triangles on the longitudinal and horizontal scales. The phase-averaged 
velocity distributions are also the superposition of 20 realizations. It is also worth noting 
that position of the vortex rings was much clearer in each flow realization than that in the 
phase-averaged visualization. 

The flow patterns in Figure 5 demonstrate the process of interaction between the shear 
layer and the vortex ring. The vortex ring impinges on the shear layer near the leading edge 
at 4> = 7t/3, generating a compact rolling-up vortex whose centre is at x/c « 2-5 for </> = 2TI/3 
[Figure 5(c)]. This compact vortex eliminates the reverse flow on its downstream side to 
reduce the instantaneous length of the separation zone, as seen from the velocity profile at 
x/c = 0-4, by transporting high-momentum fluid of the main flow towards the surface. At 
the same time, the centre of the shear layer yc, which is the y position of maximum of q', 
shifts towards the surface, yielding a dip in the plot of yc against x. 

This compact vortex grows in size downstream to make the shear layer reattach at 
a position x/c x 0-5 — 0-6 at <f> = % [Figure 5(d)]. The x coordinate of the reattachment 
position is indicated by the open triangle. As the interaction zone moves downstream, the 
reattachment position and the dip of yc also move downstream. At the last phase 0 = 5n/3 
[Figure 5(f)], the reattachment position the dip are located further downstream at x/c x 0-7; 
the next vortex ring is approaching the leading edge to yield the same pattern as that at 
0 = 0. 

It is worth noting that the motion of the dip is preceded by the motion of the vortex ring 
(Figure 6). The convection velocity of the dip is estimated to be approximately 0-50 Us, while 
the convection velocity of the vortex ring is estimated to be 0-91Us. This means that the dip 
is actually caused by the local enhancement of rolling-up of the shear layer by the 
interaction with the vortex ring. This also suggests that the longitudinal motion of the 
vortex rings are affected by its self-induced velocity because the vortex rings travel down- 
stream along the suction surface. 

Effects of the shooting frequency F on distributions of the time-mean and r.m.s. velocities 
are shown in Figure 7 for two shooting frequencies Fc/U«, = 0-80 and 5-6. The ratio of 
circulation is in the range of F/rsh = 2-5-3-6, so that, in view of the numerical simulations 
(Kiya et al, 1999; Ishikawa et al, 2000), the vortex rings are expected to pass through the 
shear layer. Figure 7 also indicates that the separated shear layer approaches the suction 

Figure 5. Flow visualization of the separated flow affected by the impinging vortex rings for Fc/U«, = 0-80 and 
r/(U„c) = 0-67. Flow is from left to right. Phase is <j> = 0 in (a) and <j> = 5K/3 in (f) with the same interval of nß 
between succesive snapshots. The phase-averaged reattachment position is indicated by the open triangles. 

Coordinates of position of the vortex rings are denoted by the solid triangles on the x- and y-axes. 

Figure 6. Phase-averaged velocity distributions q in the separated flow affected by the impinging vortex rings 
for Fc/U„ = 0-80 and F/(Uxc) = 0-67. Flow is from left to right. Phase is <j> = 0 in (a) and <j> = 5TI/3 in (f) with the 
same interval of jt/3 between successive snapshots. The phase-averaged reattachment position is indicated by the 
open triangles. Coordinates of the position of the vortex rings are denoted by the solid triangles on the x- and 
y-axes. Thin solid lines indicate the distributions of the time-averaged velocity q in the undisturbed shear layer, 

while the thick solid lines show the centre of the shear layer affected by the vortex rings. 
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Figure 7. Effects of the impinging vortex rings on the separated flow around the inclined flat plate for (a) 
Fc/Ux = 0-80, r/iU^c) = 0-73 and (b) Fc/U„ = 5-6, r/(Uxc) = 0-50: A, ü/Um; O, q/Ua; •, q'/Ux. The scale of the 

velocities is shown on top of (a) and (b). 

surface as the frequency F increases. Especially, at the frequency Fc/Ux = 5-6, the separ- 
ation zone is likely to be suppressed. 

Effects of the frequency F on time histories of the instantaneous velocity q in the shear 
layer are shown in Figure 8. The time histories are measured at a fixed position 
(x/c, y'/c) = (0-5,0-13), which is approximately the centre of the undisturbed shear layer. For 
example, the time history for Fc/U«, = 0-80 is periodic; its time-mean value is approxim- 
ately 68% greater than that for the undisturbed shear layer. This increase is due to the 
above-mentioned shift of the shear layer towards the suction surface. The time at which 
a peak of q appears corresponds to the phase 4> at which the dip of the centre of the shear 
layer yc locates right at the longitudinal position of x/c = 0-5 (Figure 6). 

As the frequency F increases further up to Fc/U^ = 5-2, the time-mean value of q in- 
creases to attain a value almost equal to U^ (Figure 8). At the same time, the time history of 
q for this frequency is random, containing no periodic component corresponding to the 
frequency F. Thus, at sufficiently high shooting frequencies F, the effects of the vortex rings 
are expected to be the same as those of the steady round jet of the same momentum. On the 
other hand, at a low frequency Fc/UM = 0-08, the time-mean value of q is the same as that 
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t{ms) 

Figure 8. Time histories of velocity q in the shear layer at (x/c = 0-5, y'/c = 0-13) for different shooting 
frequencies F: (a) Fc/Um = 0-08; (b) Fc/U„ = 0-80; (c) Fc/U» = 1-60; (d) Fc/U„ = 5-20. r/(Umc) = 0-67. The broken 
lines are the time-mean velocity q, while the dotted lines is the time-mean velocity q at the same position in the 

undisturbed shear layer. 

for the undisturbed flow, so that the vortex rings introduced at this frequency have an 
insignificant effect on the separated shear layer. 

3.3. MOMENTUM DEFECT IN THE NEAR WAKE 

The previous results are for the vortex rings generated from a single orifice whose 
centre is at mid-span, the measurements having been made in the mid-span plane. In the 
following, results will be presented for the vortex rings simultaneously generated from 
the five orifices arranged in the spanwise direction with the distance 6d, as described in 
Section 2, in order to have fairly two-dimensional interaction between the vortex rings and 
the shear layer. The distance of 6d was employed because the time-mean velocity contours 
in the vz-plane, for the single orifice, were two-dimensional in the near wake within the 
spanwise distance of + 3d. The velocity contours in the vz-plane for the simultaneously 
generated five vortex rings were found to be fairly two-dimensional at x/c = 1-15 (Suzuki 
et al, 1999). 

A measure of effects of the vortex rings impinging on the separated flow is the drag acting 
on the inclined plate. In the present study the drag was evaluated in terms of the momentum 
defect in the near wake of the plate, neglecting the contribution of pressure. High mo- 
mentum defect in the near wake is associated with low pressure there, so that high 
momentum defect implies high drag. The momentum defect M is defined by 

M = pu(Ux - w)dv, (3) 
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Fc/U 

Figure 9. Momentum defect M versus the shooting frequency F for vortex rings issuing from five orifices 
rranged in the  spanwise direction with  a distance of 6-0rf:  O,  r/(Umc) = 0-23;  A, r/(Umc) = 0-29; D, 

r/(Uxc) = 0-36. 

where p is the density of fluid. Figure 9 shows the momentum defect M in the mid-span 
plane at at x/c = 1-15, divided by its value of the undisturbed flow M0, as a function of the 
shooting frequency F. The momentum defect initially decreases with increasing F to attain 
a fairly constant value of M/M0 = 0-8 for Fc/U«, > 4-0. However, a perusal of Figure 
9 reveals that the momentum defect attains a definite minimum at Fc/Ux x 4-0. This is the 
same even when the main-flow velocity has been changed by the factor of 2, as shown in 
Figure 10. 

The particular frequency Fc/C/«, = 4-0 can be explained as follows. Periodic forcing of 
stalled flow around two-dimensional airfoils yields a particular forcing frequency, FPj at 
which the lift attains a maximum (Hsiao et al, 1989; Bar-Sever 1989; Zaman & McKinzie 
1991; Zaman 1992). The drag is also expected to attain a minimum value at the same 
frequency because the height of the separated zone becomes minimum. This frequency when 
normalized in the form FpC/U«, is in a range of 3-4 (Zaman & McKinzie 1991; Zaman 
1992), 1-3 (Hsiao et al, 1989) and 2 (Bar-Sever 1989), being of the same order as the above- 
mentioned frequency Fc/U«, = 4. At high Reynolds numbers the frequency Fp is much 
lower than the fundamental frequency of Kelvin-Helmholtz (K-H) instability in the 
separated shear layer FKH (Zaman 1992). Nishioka et al. (1990) found that the forcing by 
acoustic waves of low amplitude amplifies the fundamental mode of the linear instability, 
whereas high amplitude forcing amplifies the mode of much lower frequency. The primary 
mechanism is likely to be the shedding-type instability (Nishioka et al., 1990; Sigurdson 
1995) whose frequency scales with the height of the separation zone and the velocity at the 
separation edge Us. The mechanism is also interpreted as the impinging-type instability 
(Nakamura & Nakashima 1986; Kiya et al, 1997). 

At sufficiently low Reynolds numbers the frequency of the shedding-type instability is 
perhaps of the same order as that of the K-H instability because vortices rolled-up by the 
K-H instability can be shed downstream without further merging. This is probably the case 
in the present experiment at Re = 8300 because the frequency Fc/Ux = 4 happens to be 
that of the K-H frequency at x/c = 0-4. A similar relation is observed between the frequency 
of the shear layer instability and that of the column-type instability of a round jet (Ho 
& Huerre 1984). 
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Figure 10. Momentum defect M versus the shooting frequency F at (a) Re = 16600, r/iU^c) = 0-34- (b) 
Re = 11600, ri(Uxc) = 0-48; (c) Re = 100000, r/iU^c) = 0-56; (d) Re = 8300, r/(Uxc) = 0-67 for the vortex rings 

issuing from five orifices. 

At the optimum frequency Fc/UK = 4, the distance between the centre of the consecutive 
interaction zones is approximately 016e because the convection velocity of the interaction 
zone is 0-51l/s (= 0-651/«,). The diameter of the vortex ring is approximately l-5d (= 0-075c), 
so that the interaction zone is just sufficient to accommodate one vortex ring. 

As mentioned before, the momentum defect becomes fairly constant at the shooting 
frequencies in the range of Fc/Ux > 4-0 (Figure 9). At these frequencies there is no inherent 
instability in the shear layer to be enhanced by the interaction with the vortex rings. The 
primary mechanism for the constant value of M should be attributed to an increase in the 
longitudinal momentum due to the vortex rings. The momentum of the vortex rings is 
basically in the normal (y) direction but this is converted to the longitudinal momentum by 
their impingement on the surface. 

Effects of circulation of the vortex rings on M are shown in Figure 11. The momentum 
defect decreases with increasing circulation r but is likely to become constant at sufficiently 
high values of r. The latter is probably because such vortex rings pass through the 
separated shear layer, leaving more or similar effects on the rolling up of the shear layer, as 
suggested by the numerical simulations (Kiya et al, 1999; Ishikawa et al, 2000). 

It may be noted here that, for signal vortex rings, the momentum defect decreased with 
increasing frequency F (not shown), attaining a fairly constant value of M/M0 =0-8 for 
Fc/Uw > 6. This is the same as in the case of arrays of vortex rings. The main difference is 
that no significant minimum appeared at Fc/Ux x 4-0 for the single vortex rings. This is 
probably because the single vortex rings modified only a limited spanwise region of the 
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Figure  11   Momentum defect M versus circulation of the vortex rings issuing from five orifices: D, 
Fc/Um = 0-80; A, Fc/Vx = 4-0; O, Fc/Ux = 8-0. 

rolling-up vortices in the shear layer, which were otherwise fairly two-dimensional, and thus 
the two-dimensional shedding-type instability was not enhanced. 

3.4. EFFICIENCY OF SEPARATION CONTROL BY VORTEX RINGS 

Loss of power by the drag acting on the plate is the drag multiplied by the main-flow 
velocity. The drag of the plate is reduced by the impinging vortex rings; this reduction is 
accompanied by a reduction in loss of power AW. Thus, the efficiency of control can be 
evaluated by r\ = AW/Wvr, where Wvr is the power of generation of the vortex ring. The 
kinetic energy of the vortex ring Kvr is given by 

Kvr = - pA0 [7(f)]3 dt, (4) 

where A0 = nd2/4 is the area of the orifice. The vortex ring is generated with frequency 
F and the number of the vortex rings per unit length of the span is l/(6d). Thus the power, 
per unit length, of generation of the vortex rings is Wvr = (F/6d)Kvr. On the other hand, the 
reduction in loss of power per unit length by the control is given by AW = UX(M0 — M). 

The efficiency v\ is shown in Figure 12 as a function of the normalized frequency Fc/U«, 
and circulation r/(Uxc). It is noteworthy that a maximum of r\ appears at a frequency 
centred around Fc/Ux x 4. Thus the steady round jet, which corresponds to Fc/Ux = oo, 
is not the best choice for the control in terms of the efficiency. Moreover, the efficiency 
attains a maximum at a particular value of r/iU^c) « 0-32, which is approximately 1-5 
times that of shear layer vortices. It is worth noting that the value of this ratio is equal to the 
critical value for which a vortex ring passes through a rectilinear vortex tube (Ishikawa 
et al., 2000). 

4. CONCLUSION 

In this paper, vortex rings were successively introduced into the separated shear layer of an 
inclined fiat plate to reduce the spatial extent of the separation zone. The circulation and 
frequency of successive introduction of the vortex rings were changed to examine their 
effects on the reduction of the separation zone. The main results of this study may be 
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Figure 12. Efficiency of the active control of separation zone r\ versus (a) the shooting frequency F and (b) the 
circulation of the vortex rings r at Fc/U„ = 4-0: A, r/(Uxc) = 0-22; O, r/(Umc) = 0-27; D, r/(Uxc) = 0-32. 

summarized as follows. 

(i) The separation zone can be reduced by a chain of vortex rings impinging on the shear 
layer. This is because a compact and strong vortex is successively formed near the leading 
edge to transport high-momentum fluid of the main flow towards the surface. 

(ii) The momentum defect in the near wake of the plate, which is approximately 
proportional to the drag, is introduced as a measure of effectiveness of active control by the 
impinging vortex rings. The momentum defect decreases with increasing frequency of 
introduction of the vortex rings F, saturating at frequencies greater than Fc/Ux x 4. At this 
particular frequency, the momentum defect appears to attain a minimum value. This 
optimum frequency is of the order as the frequency at which the lift attains a maximum by 
periodic forcing of stalled flow around airfoils, suggesting that the impinging vortex rings 
enhance the shedding-type instability of the separated flow. 

(iii) In the present experiment at Reynolds number of 8300, the optimum frequency 
happens to be approximately equal to the fundamental frequency of Kelvin-Helmholtz 
instability of the separated shear layer. At higher Reynolds numbers, the optimum 
frequency Fc/Ux x 4 is expected to be much lower than the Kelvin-Helmholtz frequency. 
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(iv) There exists a particular value of circulation of the vortex rings beyond which the 
momentum defect attains a constant value. This is because such vortex rings pass through 
the separated shear layer, leaving more or less the same effects on the rolling up of the shear 
layer. 

(v) The efficiency of reduction of the separation zone attains a broad maximum approx- 
imately at the frequency Fc/Ux = 4 and at a particular value of circulation of the vortex 
ring. The former implies that the steady round jet is not the best choice for the control in 
terms of efficiency. 
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Phenomena associated with flow-induced transverse oscillation of an elastically mounted body 
are considered. The use of a recently introduced parameter that combines the effect of mass and 
elasticity—effective elasticity—is exploited to demonstrate the predictive value of the new 
approach and to provide insights into solution branching, the maximum amplitude of vibra- 
tion, and modeling. © 2001 Academic Press 

1. INTRODUCTION 

IN SHIELS, LEONARD & ROSHKO (2001), henceforth SLR, results of numerical simulations were 
presented for vortex-induced vibration of a circular cylinder vibrating transversely in 
a two-dimensional flow at Reynolds number Re = 100. The single value of Re together with 
zero value for the system damping {b = 0) were chosen, thus reducing the number of 
independent variables to two, namely the mass m and the spring constant k. It was found 
that, in a great majority of the cases, the response was essentially sinusoidal. In this 
situation, at frequency/= co/2n, the spring force, ky, and inertial force, mco2y, are continual- 
ly in opposition, and their net effect can be represented by the "effective" elasticity, 
k*fi = k* — m*co*2. The notation ()* indicates nondimensional forms, 

k* = kfipU2,   m* = m/yD2,   (o* = ü)D/Ux   and^* = ^/D, (1) 

where p and Ux are flow density and velocity, respectively, and D is the cylinder diameter, 
i.e., the scaled time is t* — tUJD rather than the traditional x = ta>„, where co„ = {k/m}1'2. 
Scaling with flow variables instead of the mechanical ones leads to the single-variable 
formulation, which gives a unified solution as function of fc*ff. In the traditional formulation, 
m* is an independent parameter and the mechanical frequency con appears in the "reduced 
velocity", UR = UJco„D, that is usually adopted as the primary variable. It may also be 
writtten UR = 1/co*. In Figure 1, we show the results of numerical simulations for the 
response of the system A* and/* = (o*/2n versus k*ff. The simulations are those reported in 
SLR and more recent ones by L. Barba (private communication). 

The advantage of a universal solution in terms of a single parameter, fc*ff, is that it is not 
necessary to make an experimental (computational) run for each value of m*. On the other 
hand, the effect of mechanical parameters is hidden in the solution. For example, the 
phenomena of "lock-in" and of multiple branches which are observed in the conventional 
coordinates are not obvious. One of the main objectives of this paper is to elucidate the 
connection between these phenomena and our unified description. 

The universal solution includes the transverse force ("lift") on the cylinder which, for 
sinusoidal motion, can be expressed as Fy = CLipU2D sin cot. The coefficient CL may be of 

0889-9746/01/040415 + 11 $35.00/0. © 2001 Academic Press 
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Figure 1. Response for undamped systems, with and without inertia, plotted against effective elasticity: (a) 
amplitude A*; (b) frequency/*. Notation: -•-, DS '98; O, LB '99; -*- LB '00. Numerical simulations of 

SLR (DS '98) and L. Barba (private communication, LB '99; '00). 

interest for modeling. In SLR, the transverse force was decomposed into two components, 
CL = CLw + CLa, where CLw is the "wake" force due to the effect of all the vorticity in the 
boundary layer and wake, while CLa is the "added-mass" force induced by the acceleration 
of the cylinder. The latter is easily computed for a given frequency and amplitude, i.e., 
CLa = ?nco*2A*. Because of continuing controversy about the applicability of the classical 
result for the added mass contribution to the fluid force, we present a review in the 
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appendix. More difficult to understand is the total cross-force CL and its component CLw. 
For example, it is counter-intuitive that CL = 0 at the synchronization condition /=/„, at 
which condition, then, CLw = -CLa. These aspects of the transverse force are described in 
Sections 2 and 3, while the branching solutions associated with the universal solution are 
discussed in Section 4. 

2. SYNCHRONIZATION AND LOCK-IN 

The two terms, synchronization and lock-in, are often used synonymously but in SLR it was 
shown that, for zero damping and sinusoidal motion, synchronization (/=/„) occurs at 
only one condition, k*(f = 0. This follows from 

fee*ff = k*- m*co*2 = m*(co*2 - a*2), (2) 

which can be rewritten to show 

co*2 = cof - kt({/m*. (3) 

That is, for nonzero values of fe*ff, co only approaches con asymptotically when m*»l. 
Indeed, it is from experiments in air (Feng 1968), for which m* ~ 103, that the traditional 
knowledge of "lock-in" developed. (Note, in equation (2), that in the range of high- 
amplitude response, co* = 1/R 

1 ~ 1 and fc*ff < 3.) On the other hand, it was from experi- 
ments in water [e.g., Khalak & Williamson (1997), Gharib et al. (1997), 1998, Gharib 
(1999)], for which m* ~ 1 - 10, that the notion of "absence of lock-in" developed. In such 
cases, the plot of ///„ is an increasing function of UR which crosses the ordinate ///„ = 1 at 
UR « 1-0. Those values of UR for synchronization, at Re ~ 103-104, are remarkably close to 
the value from the universal solution /*(/ce*ff) at Re = 100; that is, /„* =/*(0), = 0-156, from 
which C/J? = (27r/„*)-1 = 1-02. 

It is also noteworthy that for large values of m*, for which the synchronization value of 
UR cannot be readily identified, as noted above, the value UR x 1-0 is the point at which 
a jump in amplitude is observed from an upper to a lower branch, as UR is increasing. In 
some cases (Feng 1968; Brika & Laneville 1993), the jump is hysteretic, i.e., a jump from 
a lower to an upper branch, for decreasing UR, is not observed. In other cases (Khalak 
& Williamson 1999), the jumps are intermittent rather than hysteretic, perhaps depending 
on the mass-damping parameter m*C( = h URb*). The connection with synchronization may 
be found in the equation of motion which, for zero damping and sinusoidal motion, as 
explained above, reduces to 

( - m*co*2 + k*)A* = k*{fA* = CL. (4) 

Thus, CL = m*(co*2 - co*2)A* is changing sign, i.e., phase, at synchronization. From the 
investigations in air (m* > 1), it is known that at the hysteretic jump there is a phase change 
(re) in vortex shedding. Further discussion on branching is in Section 4. 

3. AMPLITUDE AND CROSS-FORCE 

To associate the amplitude of vibration A* with the transverse force coefficient CL can be 
misleading. Thus, for a stationary cylinder, A* = 0 and CL = 1-30 while for a cylinder 
vibrating at high amplitude CL may have the value zero (at fc*ff = 0, where A* = 0-47!) 
Figure 2(a) shows the overall relation between CL and A*. The components of CL, i.e., the 
added-mass component CLa and the wake component CLw, are shown in Figures 2(b) and 
2(c), respectively. Clearly, the relations are not simple. The plot for the wake force is 
especially interesting, showing a large change of CLw, from negative to positive values, at 
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nearly constant amplitude, A* « 0-58. Surprisingly, as noted in SLR, that change is 
accompanied by barely perceptible change in the pattern of separation and vortical 
structure in the wake. 

4. BRANCHING OF SOLUTIONS 

In this section, we discuss the discontinuous or branching behavior often observed when 
following the amplitude of the response as the reduced velocity is varied continuously; see, 
e.g., Khalak & Williamson (1999). In particular, we show how this behavior is connected to 
our unified description. 

As shown in Figure 1, the frequency, /*, and amplitude, A*, of the response will depend 
only on the effective stiffness, fc*ff = k* - m*co*2, the nondimensional damping, b*, and the 
Reynolds number, Re, i.e., 

/* =/*(fe*ff, b*, Re),   A* = A*{k%, b*, Re), (5,6) 

assuming that the motion is nearly sinusoidal. Given the functions (5) and (6), consider now 
determining the response for a given experiment. For a fixed mechanical and fluid system, 
m* is fixed but k*, b*, and Re vary as the freestream velocity, Vx, varies. If we then also fix 
Ux, then we need only to solve equation (5) implicitly for /* or co*2 = An2f*2. To do so let 

co*2 = F{k*{[, b*, Re). (7) 

Then 

fe*f = k* - m*co*2 = k*- m*F(k*{{, b, Re). (8) 

Thus 

171* 
m*F{k%(, b*, Re) + kf{( = k* = -^, (9) 

and so k*{{ may be determined from (9) and then/* or co*2 may be found from equations (5) 
or (7), respectively, and A* from (6). (An alternative procedure to do this inversion was 
presented in SLR in which one begins with chosen m* and k*ff and then determines the 
corresponding A*, f* and UR. However, using this method it is not convenient to 
demonstrate branching behavior and one also has accuracy problems at large m* as 
discussed by SLR.) 

However, equation (9) may produce multiple solutions for k*{{. Consider the data 
produced by computational experiments of SLR for b* = 0 and Re = 100. Using the results 
shown in Figure 1, we show in Figure 3 the left-hand side of equation (9) versus /c*ff for the 
case m* = 2. Note that, in this case, any value of UR will produce a unique value fc*ff, i.e., no 
multiple solutions. On the other hand, as m* increases the importance of the nonlinear (in 
/c*ff) first term on the left-hand side of equation (9) increases. For example the case m* = 28 
is shown in Figure 4. Note that in the range 36 < m*/U2

R < 46 or 0-78 < UR < 0-88 three 
solutions may be possible. As illustrated in the figure, the one corresponding to the largest 
k*[t would have the lowest amplitude [see Figure 1(a)] and therefore belong to the "lower" 
branch and the smallest fc*ff would correspond to the highest amplitude or "upper" branch. 
A third or intermediate solution could possibly fall in the range 2 < fc*ff < 4 but it is 
approximately within this range that the response has been found to be nonsinusoidal as 
indicated in the figure. Branching for this case (m* = 28) is seen to occur also in the range 
16 < m*/Ul < 25 or 1-06 <UR< 1-32 and corresponds to the branching discussed in 
Section 3, connected with the condition fc*ff x 0. In this regime the largest solution for 
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Figure 3. m*w*2 + k*n or m*/Ul plotted against effective elasticity for the case m* = 2.0: o, DS, m = 0; •, DS, 
m # 0; O, LB '99; A, LB '00. Numerical simulations of SLR and L. Barba (private communication). 
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Figure 4. m*co*2 + fc*ff or m*/Ui plotted against effective elasticity for the case m* = 28.0: o, DS, m = 0; —•—, 

DS, m # 0; O, LB '99; A, LB '00. Numerical simulations of SLR and L. Barba (private communica- 
tion). 

fc*ff (i.e., /c*ff« 0) would correspond to the largest amplitude A* while the intermediate 
solution for k*{f would yield, in general, a significantly smaller amplitude. A third solution 
also exists for a larger negative value of/c*ff, because the left-hand side of equation (9) tends 
to k*{{ as fe*ff becomes large negative, but the corresponding amplitude would be even 
smaller. 
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Figure 5. Amplitude plotted against reduced velocity for m* = 2-1. From the value UR = 1: b* = 0-31, k* = m*, 
and Re = 32 x 103. Experiments of Gharib (1999). 

This type of discontinuous or branching behavior is also found in the laboratory 
experiments of Gharib (1999), depending on the value of m*. In Figure 5, we show the 
response A* versus UR, for the case m* = 2-1. A* appears to vary smoothly, in agreement 
with the behavior inferred for the computational case, m* = 2, from Figure 3. However, 
a different result occurs for the case m* = 28, as shown in Figure 6. Note the nearly 
discontinuous behavior at UR x 0-86 and possible branching near UR « 1-05. The source of 
this behavior is clear when we consider the variation of m*F{k*{i, b*, Re) + k*ff as a function 
of fe*ff for this data, shown in Figure 7. The jump in amplitude at UR x 0-86 is a consequence 
of the flatness of the curve in the range 4 < k*[{ < 6 and the fact that 4* is a rapidly varying 
function of fe?ff in this range (see Figure 8). The drop to low A* at UR « 1-05 is simply the 
change in solution branch as m*/UR decreases through the value « 25. 

In the laboratory experiments (fixed m* but UR variable) some variation in b* and Re 
takes place because b* ~ UR

1
 and Re ~ UR. [For the case m* = 2-1 above, b* = 0-31 and 

Re = 32 x 103 at 17* = 1 and, for the case m* = 28, b* = 0-39 and Re = 23 x 103 at UR = 1 
(Gharib 1999).] Thus, the data shown in Figure 7 are not at fixed b* and Re, but include 
some variation in both parameters while the data of Figures 3 and 4 are at fixed b* = 0 and 
Re = 100. Of course, equation (9) is valid in either case but its use in the case of varying 
b* and Re may require some additional iteration. 

5. REMARKS 

We have developed further insights into the phenomena of flow-induced vibration by 
exploiting a unified description of the response of the system, presented in a recent paper by 
SLR. In this approach, the effective elasticity, fc*ff, and damping, b*, replace three traditional 
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Figure 6. Amplitude plotted against reduced velocity for m* = 28-0. For the value UR = 1, b* = 0-39, k* = m*, 
and Re = 23 x 103. Experiments of Gharib (1999). 
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Figure 7. m*eu*2 + k*„ or m*/Ul plotted against effective elasticity for the case m* = 28-0. Same experiment as 
in Figure 6. 

parameters, mass ratio, m*, reduced velocity, UR, and mass damping, m*£ for transverse 
oscillations of an elastically mounted body. Body geometry and Reynolds number remain 
as additional parameters in either case. 

As noted in SLR, the results of a traditional experiment performed at a given m* may be 
used to predict the results for other m*. This is so because, in a given experiment in which 
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Figure 8. Amplitude plotted against effective elasticity for m* = 28-0. Same experiment as in Figure 6. 

UR is varied, the unifying parameter 

fc?ff = k* m*co*2 m*/U£ = m*a> *2 (10) 

also takes on all values of interest. In particular, we have shown that the branching of 
solutions, often observed in traditional experiments, is a consequence of the response 
frequency dependence on /c*ff, which itself is dependent on the response frequency. For the 
limited computational and experimental data we have considered in this paper branching 
behavior is predicted and observed to occur only at higher m*. The response, A* versus UR, 
is smooth at low m*. This result appears to be at odds with the branching observed by 
Khalak & Williamson (1997) for m* = 2-4(n/2) = 3-7 but could be due to effects of Reynolds 
number. 

The possibility of formulating a unified description of the response, in terms of one 
parameter, fc*ff, was facilitated by setting the damping b* equal to zero in the numerical 
simulations, thereby ensuring that the spring and inertial forces are in line. A few simula- 
tions (in SLR) over a range of finite b* show, not surprisingly, that amplitude is reduced 
(dA*/db* ~ — 0-3 for b* <g 1). Thus, the maximum value of amplitude for the unified 
solution, A* = 0-59 [Figure 1(a)], must be the maximum value for any combination of 
parameters, at Re = 100! 

The relation of b* to the conventional damping coeffieient £ is given by b* = 2m*C/UR, 
i.e., it is equal to about twice the "mass-damping parameter" m*( (since UR ~ 1) that has 
been used to determine maximum values of amplitude, starting with investigations by 
Griffin & Ramberg (1982). Indeed, A* -> A*ax for b* -> 0, as found by those and other 
investigators. The maximum value of amplitude, however, depends on Reynolds number. 
This is evident from the result of Khalak & Williamson (1997, 1999) and of Gharib (1999); 
values of A* as high as 1-2 have been observed. 

Among the issues that need further investigation is that of modeling vortex-induced 
vibration. It seems that modeling efforts could benefit by considering the unified description 
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presented in this paper and SLR. But it will still be a challenging task given, e.g., the 
counter-intuitive relation between amplitude and transverse force coefficient discussed 
above. Another item that needs further consideration is nonsinusoidal response and how 
such a response might be considered within the framework of the unified description. As 
noted above, aperiodic behavior does occur under certain conditions. In the computational 
study, for example, the response becomes modulated in what would be the range, 
3 < /c*ff < 5. 
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APPENDIX: ADDED MASS 

The "apparent" or "added mass" of an accelerating body is equal to the reactive force which 
the body exerts on the fluid in which it is immersed divided by the acceleration. Alterna- 
tively, it is equal to the impulse given to the fluid during an incremental change of body 
velocity divided by that incremental velocity. For the circle (cylinder in two-dimensional 
flow) or sphere, the impulse is aligned with the velocity change, but not in general, and then 
the ratio of impulse to velocity, i.e., the apparent mass, is a tensor quantity. These properties 
are well known from textbook derivations which are usually obtained for irrotational flow 
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and so it is not as well known that the resulting definitions are applicable more generally, 
e.g., in separated flows such as those that occur in problems of flow-induced vibration. As 
a result, empirical relations are sometimes introduced into models, unnecessarily. This 
assertion perhaps becomes obvious on noting that, in incompressible flow, an incremental 
velocity AV instantaneously generates a potential velocity field, proportional to AV, which 
is superimposed on the existing velocity field, whatever that may be, and that is why the 
conventional derivation based on irrotational flow is successful. But an alternative deriva- 
tion, which addresses the vorticity field explicitly, may be more convincing. Here, we derive 
the result specifically for a circular cylinder. 

The force Fb on the cylinder in two-dimensional flow can be calculated from the following 
relation (Koumoutsakos & Leonard 1995): 

d 
F* = Pdt fluid 

»xxdi + pAB—-. (A.l) 
at 

[in equation (21) of Koumoutsakos & Leonard, the sign of the first term is incorrect.] Using 
polar coordinates (r, 0), with origin at the center of the circle and 0 measured from the 
direction of acceleration, dV/dt, the force F in that direction is 

'-* 

•2n &y 
rcoz sin dr dr d0 + pna2 —-. (A.2) 

o dt 

Vorticity is found only in the boundary layer and wake of the body. Unsteadiness of that 
vorticity results in unsteadiness of F, even if the body is stationary. However, independently, 
during acceleration new vorticity is generated at the surface of the body, and instantaneous- 
ly creates a potential velocity field as noted above; its contribution to the force integral is 
the only contribution connected with the body acceleration and it uniquely defines the 
added mass. This contribution to the integral in equation (A.2) may be evaluated by noting 
that the new vorticity is contained in a singular layer whose strength 
y(0) = lim^o|r+Vft)zdr = lim^„ \r2{ - due/Br) dr = a\ - 2AV sin 0). The last term in 
parenthesis is the velocity along the cylinder surface (i.e., at the edge of the singular vorticity 
layer) due to an incremental velocity AV of the cylinder. Using this in equation (A.2) to 
complete the evaluation of the integral, we get 

„      ?dF 2dV 2dV .... 
F = - 2pna2 — + pna2 — = - pnaz —. (A.3) r       dt dt dt 

(Note that for a stationary body [_Ub = 0 in equation (A.l)] in an accelerating stream, the 
result will be F = - 2pna2 dV/dt.) 
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The technique of high-image-density particle image velocimetry (PIV) can lead to instan- 
taneous, global representations of the wake of a cylinder in a steady current and free-surface 
waves. Approaches to characterizing the complex patterns of the wake are described for several 
classes of experimental systems. Emphasis is on imaging in different planes, with the aim of 
providing insight into the quasi-two- and three-dimensional features of the near-wake. 

© 2001 Academic Press 

1. INTRODUCTION 

DURING THE PAST DECADE, application of particle image velocimetry to the wakes of cylinders 
has yielded quantitative insight in a wide variety of investigations. They are described in 
works edited by Eckelmann et al. (1992) and Bearman & Williamson (1998), and the 
conference abstracts provided by Bearman et al. (2000). Further overviews are given by 
Rockwell (1998, 2000). 

High-image-density particle image velocimetry, based on film as a recording medium, 
was employed in the investigations summarized by Rockwell et al. (1993). Representative 
images therein illustrate both the quasi-two- and three-dimensional features of the near- 
wakes of cylinders. More recent studies that employed film-based systems have focused on 
the issues of: Reynolds number sensitivity of the near-wake vortex patterns (Lin et al. 1995); 
simultaneous existence of small- and large-scale concentrations of vorticity in the near- 
wake (Chyu & Rockwell 1996a; Sheridan et al. 1997); timing of initially-shed concentrations 
of vorticity in relation to oscillations of the cylinder (Gu et al. 1994; Sheridan et al. 1998); 
three-dimensional structure of the near-wake of a stationary cylinder (Lin et al. 1996ft; Chyu 
& Rockwell 1996ft; Brede et al. 1996) and an oscillating cylinder (Towfighi & Rockwell 
1994; Gu & Rockwell 1995); control of the near-wake by three-dimensional fluid injection 
(Lin et al. 1995) and interaction between stationary and deformed free-surfaces with the 
near-wakes of stationary and oscillating cylinders (Lin et al. 1996a; Sheridan et al. 1997). 
The consequence of spatial resolution of the image acquisition system on interpretation of 
small- and large-scale vortex interactions in the near-wake region is assessed by Lin 
& Rockwell (1997). 

Recent investigations that employ the digital version of particle image velocimetry 
(DPIV) have provided substantial insight into the near-wake structure of a cylinder. The 
three-dimensional features of the wake from a stationary cylinder were addressed by 
Wu et al. (1994, 1996). More recently, the emphasis of most investigations has been on 

0889-9746/01/040427 + 17 $35.00/0 © 2001 Academic Press 
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quasi-two-dimensional patterns of the near-wake structure of a stationary and an oscillat- 
ing cylinder. This series of investigations includes: the wake system from arrangements of 
cylinders (Sumner et al. 1998, 2000); the wake from an accelerating cylinder (Noca et al. 
1998,1999); wakes from oscillating cylinders (Techet & Triantafyllou 1998; Atsavapranee et 
al. 1998); the wake structure from a cylinder in orbital motion (Williamson et al. 1998); and 
the two- and three-dimensional wake from a stationary cylinder in presence of a free-surface 
(Lang & Gharib 1998). 

In nearly all of the foregoing investigations, presentations of patterns of instantaneous 
velocity and vorticity, as well as phase- or time-averaged representations of them, has 
been a primary goal. Of course, once quantitative images are attained, a range of possibili- 
ties for interpretation become available, as described by Rockwell (2000). For example, 
employment of topological concepts based on critical point theory, a snapshot version of 
proper orthogonal decomposition (POD), as well as a variety of other approaches can be 
invoked. Furthermore, direct links to a range of theoretical, vorticity-based models 
can be attained. These models represent concepts of: convective instabilities of the near- 
wake; forces on the cylinder in relation to patterns of velocity and vorticity; generation of 
acoustic power in coupled wake-resonator systems; and the onset of critical states in 
swirling flows. 

Of all of these conceptual frameworks for interpreting PIV images, the most relevant to 
our present considerations is the relationship between the forces on the cylinder and the 
space-time imaging of the cylinder wake, for either a stationary or an oscillating cylinder. 
For the situation where the vorticity is confined to the field of view during the process of 
vortex shedding, Lin & Rockwell (1996) and Zhu et al. (2000) have employed the vorticity 
moment concept described, for example, by Lighthill (1986) to determine either the un- 
steady forces or the time integral of the unsteady forces acting on a cylinder. In fact, the 
theoretical concept advocated by Wu (1981) and Lighthill (1986) has been further developed 
by Noca (1996) and Noca et al. (1997), with the aim of accounting for all of the previously 
generated vorticity that is not contained within the field of view of the PIV imaging system. 
In essence, this involves a control volume approach. Unal et al. (1997) developed a control 
volume technique based on momentum concepts and, in a parallel and complementary 
investigation, Noca (1997) and Noca et al. (1999) arrive at a different, but presumably, 
equivalent momentum-based control volume expression. More recently, Noca et al. (1999) 
provide a critical assessment of various control volume representations and, in addition, 
formulate a type of flux equation that requires knowledge of only the parameters along the 
boundary of the control surface. Application of particle image velocimetry (PIV) to the 
assessment of forces on a cylinder clearly involves a number of limitations, as described in 
the foregoing citations. Irrespective of the degree of approximation, however, links to 
theoretical concepts have clearly been established, thereby allowing more meaningful 
interpretation of quantitative images. 

The wake from a cylinder can take on a variety of forms, depending upon the nature of 
the incident current (steady flow), the wave motion, or a combination of them. By now it is 
well known that even for the comparatively simple system of a stationary cylinder in 
a current, the near-wake exhibits a range of possible states. When a stationary, vertical 
cylinder is immersed in a wave, one expects particularly complex states of the wake, due to 
the elliptical particle trajectories of the wave motion and their variation along the span of 
the cylinder. Furthermore, elastic or controlled oscillation of the cylinder can further 
modify the nature of the wake. Interpretation of these representative wake patterns in 
relation to the loading on the cylinder can be guided by the conceptual frameworks outlined 
by Wu (1981) and Lighthill (1986). Central to this interpretation, of course, is a quantitative 
knowledge of the wake structure, preferably in terms of vorticity. 
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The present aim is to describe selected imaging configurations and representative 
images that address complex features of the near-wakes of cylinders. An overview of 
experimental approaches and generic features of imaging systems is followed by descrip- 
tions of arrangements that allow simultaneous orthogonal views and dual views of the 
near-wake. 

2. OVERVIEW OF EXPERIMENTAL APPROACHES 

All of the investigations herein employ one of a variety of continuous wave Argon-ion lasers 
as an illumination source, either a rotating, multi-faceted polygon mirror or an oscillating 
fiat mirror to induce rapid scanning of the laser beam, and one of several types of 35 mm 
film (motor-driven) cameras for image acquisition. 

An Argon-ion laser, with a maximum power rating between 5 and 25 W, generated 
a continuous beam of approximately 1 mm diameter. This beam then impinged upon either 
the rotating or oscillating mirror, which scanned the laser across the region of interest. For 
both types of mirror systems, the aim was to provide relatively high-intensity illumination 
from a continuous laser source. The effective pulse rate of the illumination was dictated by 
the laser-scanning rate. A major advantage of laser scanning is that the total power of the 
laser beam illuminates each particle as it sweeps across the flow. Moreover, generation of 
multiple-pulsed images of particles is easily achieved by adjusting the scanning rate relative 
to the shutter speed of the camera. A further virtue of this scanning illumination technique is 
that qualitative patterns of particles can be continuously observed in the plane of the laser 
sheet immediately prior to and during acquisition of PIV images. This approach allows 
effective monitoring of the overall features of the flow. A disadvantage of the laser scanning 
approach is an effective reduction in illumination time of each particle at higher scanning 
frequency, which is required at higher values of flow velocity. In addition, the retrace time of 
the oscillating mirror, whereby the beam traces back to its initial position during each 
scanning cycle, or splitting of the beam at the edge of a polygon (multi-faceted) rotating 
mirror, can result in a reduction of the effective duty cycle of the scanning laser beam if the 
system is not properly designed (Rockwell et al. 1993). For the investigations described 
herein, the rotating polygon mirror had either 8,48 or 72 facets. It was controlled externally 
by an analog system in order to maintain the revolution rate to within an accuracy of 0.1%. 
In effect, the typical scanning rate of the laser beam across the plane of interest using the 
polygon mirror ranged from approximately 100 to 700 cycles/s. Alternately, an oscillating 
mirror was employed. It was mounted on a galvanometer scanner, which was externally 
controlled by a driver unit. This arrangement is effective for lower scanning rates, extending 
up to approximately 100 Hz; such scanning rates are required at lower values of velocity. 
Over this range of operation, the oscillating mirror system is preferred to the rotating 
polygon mirror, which yields significant uncertainty of the laser-scanning rate at low values 
of mirror rotation rate. For the experimental configurations described herein, the oscillating 
mirror is preferred over the rotating mirror for certain end views, i.e., crossflow planes. 

For all of the present experiments, the flow was seeded with metallic coated, hollow 
plastic spheres having a nominal diameter of 12-14 um. The required number of particles 
can be estimated a priori. The relevant image density parameter, originally defined by 
Adrian & Yao (1984), is iVr = Cb.z^M, in which C is the mean number of particles per 
unit volume, and Az is the thickness of the laser sheet. The interrogation cell employed for 
evaluation of the velocity vector has an area of A^M on the plane of the laser sheet. If 
iVj» 1, there is a high probability of finding many particle images in the interrogation cell. 
For the present experiments, the representative interrogation area was 0.5 mm2, the thick- 
ness of the laser sheet was approximately 1 mm, and values of magnification ranged from 
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1:6 to 1:11. The interrogation volume contained approximately 30-60 particle images, 
which substantially exceeds the high image density criterion. 

Multiple-pulsed illumination was attained by maintaining the camera shutter open 
during three to five scans of the laser beam across the plane of interest. Keane & Adrian 
(1990, 1991) undertook theoretical and numerical analyses to assess the performance 
criteria of multiple- versus double-pulsed systems, as well as other features of PIV ap- 
proaches employing autocorrelation techniques. As pointed out by Adrian (1991), a four- 
pulse single exposure that contains Nj particles yields a self-correlation peak of height 4AT7, 
a first correlation peak of height 3JV7 and so on. The overall performance is essentially 
equivalent to that of a double-pulse image pattern obtained from 3Nj particles at the same 
time spacing At. 

The multiply- pulsed patterns of particle images were recorded on high-resolution 35 
film. It provides an effective pixel size, as calculated from one-half of the line pairs per 
millimeter, of 5 urn x 5 urn, and an effective format of 7000 x 4800 pixels or, equivalently, 
a total of 33-6 x 106 pixels. This concept of pixel equivalents for a film-based format relative 
to the pixel format of video/digital camera systems is assessed by Adrian (1995). It is crucial 
that the 35 mm negatives are digitized at sufficiently high resolution. For the present 
experiments, the digitizing process was executed at 125 pixels/mm. 

Several types of motor-driven 35 mm cameras were employed to acquire sequential 
images of the flow. Depending upon the time scale of the flow event, which was relatively 
slow in the water systems described herein, it was possible to attain adequate temporal 
resolution to allow reconstruction of cinema sequences. Standard, motor-driven 35 mm 
cameras had framing rates in the range of approximately 5-10 frames/s. In addition, 
a specially designed framing camera allowed acquisition of images at a rate of 60 frames/s' 
This system is the basis of the cinema PIV approach described in detail by Lin & Rockwell 
(1994, 1999). It provides an effective transfer rate of 2 x 109 equivalent pixels/s. 

For all camera systems, an image-shifting mirror was located immediately in front of the 
lens system. While the camera shutter was open, the mirror was subjected to a prescribed 
rate of rotation by a galvanometer scanner. This image shifting, in essence, provides 
a constant bias displacement to all particle images, which is removed following the 
interrogation procedure to evaluate the velocity field. Such a bias is necessary in order to 
preclude directional ambiguity in regions of negative or reverse flow. In the present 
investigations, the typical dimensions of the bias mirror were 50 mm x 30 mm x 1 mm. Full 
details of the bias mirror concept are described by Adrian (1986). In order to ensure that the 
motion of the bias mirror does not distort the pattern of particle images, it should be 
operated within a specific range of parameters. If caution is not exercised, systematic 
distortions of the patterns of particle images may arise, as described by Oschwald et al. 
(1995), Lee et al. (1996) and Raffel & Kompenhans (1995). The latter two groups of 
investigators propose techniques to correct for systematic errors. 

Irrespective of the type of image acquisition system, it is important to consider the 
paraxial recording criterion. Let xmax represent the maximum in-plane location of a particle 
measured from the centerline of the camera lens, and d0 the object distance; the ratio xmJd0 

should be minimized (Lourenco & Whiffen 1986; Adrian 1991). This condition ensures that 
the consequences of out-of-plane motion are small when determining the velocity field from 
in-plane measurements. 

In addition to the foregoing considerations, Keane & Adrian (1990, 1991) show, via 
theoretical concepts and numerical simulations, that the best overall performance of 
a double-pulsed imaging system is attained when: (i) the in-plane displacement of a particle 
is less than one-fourth the width of the measuring volume (cell); (ii) the out-of-plane 
displacement of a particle is less than one-fourth the thickness of the laser sheet; and (iii) the 
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velocity variation over the measuring volume is less than 20% of the characteristic velocity 
within the volume. Criterion (ii) is particularly important for end view measurements, i.e., 
measurements in the crossflow plane of a highly three-dimensional flow. Design of the 
imaging systems described herein aimed to satisfy these criteria. 

In the following, three different classes of PIV arrangements are considered: (i) an 
orthogonal view system, which allows simultaneous acquisition of images in orthogonal 
laser sheets; (ii) a dual view system, which provides simultaneous acquisition of images in 
two adjacent fields of view in the same plane for cases where the region of interest has a very 
high aspect ratio; and (iii) a dual view system, which also involves adjacent fields of view, but 
with the aim to preclude blind areas, or shadow effects, due to use of a long object distance 
in presence of a stationary or oscillating body. 

3. ORTHOGONAL VIEW SYSTEM FOR THREE-DIMENSIONAL FLOWS 

The objective of this class of imaging is to acquire space-time representations of the flow in 
two orthogonal views, i.e., in two planes oriented perpendicular to each other. This 
approach allows simultaneous characterization of the quasi-two- and three-dimensional 
structure of the flow. An important physical issue is the degree to which motion of the body 
attenuates large-scale three dimensionality, and whether the nature of small-scale spanwise 
three dimensionality is attenuated, or even enhanced, by the body motion. This issue is 
generic to oscillating bodies undergoing not only transverse motion, but also in-line and 
orbital motions relative to an incident, steady current. The nature of the three-dimensional 
structure from a stationary cylinder has been the subject of intense investigation as reviewed 
by Williamson (1996b), who describes numerical, theoretical and experimental investiga- 
tions. For our present purposes, selected experimental studies are of interest. Remarkable 
insight has been provided by the visualization studies of Hama (1957), Gerrard (1978) and 
Williamson (1988,1992,1996a). Corresponding application of particle image velocimetry to 
characterize patterns of instantaneous velocity, streamlines and vorticity were initially 
undertaken along the span of the stationary cylinder, and at a transverse location corre- 
sponding to the outer edge of the wake, by Rockwell et al. (1993) and Wu et al. (1994,1996). 
Subsequent studies of Chyu & Rockwell (1996b), Lin et al. (1996b) and Brede et al. 
(1996) used space-time imaging to determine patterns of velocity and vorticity across the 
entire crossflow plane in the near-wake. To date, the quantitative patterns of streamwise 
vorticity in the near-wake of a cylinder undergoing transverse oscillations have not been 
characterized. 

A schematic of an orthogonal view system is given in Figure 1. It involves a single laser 
beam and two rotating polygon (multi-faceted) mirrors, as well as two bias mirror-camera 
units. Details of this arrangement and its application to a variety of oscillating cylinder 
systems are given by Cetiner & Rockwell (2000). A major challenge of orthogonal laser 
sheet PIV is the interference of one laser sheet with imaging in the other sheet. For 
example, if one attempts to obtain patterns of particle images in the side view, the 
high intensity of the end view laser sheet intersects the side view sheet. This intersection 
makes it impossible to attain adequately resolved particle images over a significant region 
of the field of view. To circumvent this difficulty, it is desired to shut off the illumination 
of the end view sheet when imaging in the side view, and conversely. This is accomplished 
by employing a Pockels cell arrangement, as indicated in Figure 1. The Pockels cell rapidly 
switches the laser beam from its colinear (throughput) mode to its deflected mode. In doing 
so, the beam is shifted from a position that generates a side view laser sheet, which 
is eventually transmitted to camera 1, to an end view laser sheet, which is recorded by 
camera 2. 
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Figure 1. Schematic of arrangement for space-time imaging in two orthogonal views which are 
defined by two laser sheets. A single laser generates the laser sheets via deflection of the laser beam 

through a Pockels cell. 

More specifically, the end view of the laser sheet was generated as follows. The beam from 
the Pockels cell was deflected at an angle as represented by the circular mirror arrangement 
on the side of the Pockels cell. This deflected mode is designated by the dashed line. The 
beam eventually impinged upon two successive steering mirrors. It was then transmitted 
through a series of focusing optics and eventually impinged upon the rotating mirror that 
generated a scanning laser beam over a plane orthogonal to the incident flow U. The field of 
the end view of the laser sheet is designated by the gray shaded area. The pattern of particle 
images was transmitted to the bias mirror 2, then reflected to the back of camera 2. An 
analogous concept was employed for the side view. The entire system comprising the 
Pockels cell and the camera-bias mirror units 1 and 2 were controlled by a laboratory 
microcomputer. The time delay between the throughput and deflected laser beam modes of 
the Pockels cell was approximately 70 ms. This laser switching arrangement thereby 
provides multiplexing of the side and end view image acquisition. Such multiplexing allows 
a space-time reconstruction in the two orthogonal views, whereby the image sequence is 
essentially synchronized, with the aforementioned time delay. The values of magnification 
of cameras 1 and 2 were 1:6 and 1:7-8. The fields of view in the side and end views were, 
respectively, 206 mm x 133 mm and 223 mm x 164 mm. Typically, a total of 6111 and 4720 
velocity vectors were obtained for the side and end views, respectively. Representative 
excerpts from the synchronized sequences of side and end view images of vorticity are 
exhibited in Figure 2 for the case of a cylinder undergoing transverse oscillations at a value 
of A/D = 0-96, in which A is the amplitude of the cylinder motion, and D is the cylinder 
diameter. The Reynolds number is Re = 1238. It is evident that projections of streamwise 
vorticity exhibited in the end view sequence can have substantial values of peak vorticity 
and circulation. In fact, the peak values of these vorticity concentrations are of the order of 
13 s~* in comparison with representative concentrations in the side view having 30 s~\ It is 
therefore apparent that cross-stream oscillations can effectively attenuate larger modes of 
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Figure 2. Space-time imaging in orthogonal views of vortex formation from an oscillating cylinder. 

spanwise three dimensionality, but, in fact, are associated with pronounced concentrations 
of small-scale streamwise vorticity. 

4. DUAL VIEW SYSTEM FOR FLOW REGIONS WITH HIGH ASPECT RATIO 

The overall goal of this type of quantitative imaging is to provide instantaneous views of the 
flow structure over, for example, the entire spanwise extent of a cylinder having a relatively 
large length-to-diameter ratio. It is, of course, desired to maintain adequate spatial resolu- 
tion, in order to characterize the evolution of patterns of instantaneous velocity and 
vorticity in the near-wake. A representative configuration is a long vertical cylinder in 
a wave tank. The present aim is to characterize the variations of the direction of transverse 
vortex shedding along the span of the cylinder. Such a variation is an indicator of the 
spanwise coherence of vortex shedding, and thereby the transverse force on the cylinder. It 
is well known that time-dependent variations of the transverse force on a vertical cylinder in 
a wave can exhibit substantial modulations. The issue is to what degree such modulations 
can be associated with spontaneous transformation between states of three-dimensionality. 
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Figure 3. Schematic of experimental system illustrating wave tank, laser sheets, and orientations 
and arrangements of cameras employed for high-image-density particle image velocimetry. 

For the particular case of a cylinder subjected to unidirectional oscillations in quiescent 
fluid or, conversely, a stationary cylinder in a flow undergoing unidirectional oscillations, 
Honji (1981), Sarpkaya (1986), and Tatsumo & Bearman (1990) have effectively character- 
ized the patterns of spanwise-periodic three dimensionality using qualitative visualization. 
These studies vividly show that the spanwise wavelength of these patterns can range from 
approximately one cylinder diameter to several cylinder diameters. Furthermore, in the 
experiments of Obasaju et al. (1988), particle visualization taken simultaneously at two 
cross-sections along the span of the cylinder clearly suggests the existence of three dimen- 
sionality. With regard to numerical simulations of such three-dimensionality, the recent 
investigation of Duetsch et al. (1998) shows well-defined, spanwise periodic structure along 
the cylinder. The present emphasis is on the case of an actual free surface wave incident 
upon a vertical cylinder. The orbital particle trajectories of the wave, along with the 
different boundary conditions at the free surface and bottom (solid) surface of the wave tank 
are expected to significantly alter the nature of the three-dimensionality. Characterization 
of the spanwise structure of the near-wake, either for the aforementioned case of unidirec- 
tional flow or cylinder motion, or orbital motion of an actual wave, has not yet been 
pursued using high-image-density particle image velocimetry. 

An overview of the imaging system, in conjunction with the wave tank, is given in 
Figure 3. Of principal interest for our present considerations is the PIV imaging technique. 
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Complete details of this approach, as well as descriptions of corresponding shadowgraph 
and force measurement techniques, are given by Yang, Lin & Rockwell (2000). The wave 
tank was custom-designed in order to allow optical access on all three sides. It is construc- 
ted of high-quality one-half inch glass suspended in a metal frame. As indicated in Figure 3, 
cameras (a) and (b) are employed for the dual end view, and camera (c) for a side view. 
Emphasis herein is on laser sheet orientation B, which is orthogonal to the direction of wave 
propagation. The location and orientation of the multi-faceted rotating mirror (48 facets) 
that generates this laser sheet is indicated beneath the wave tank. The plane of laser sheet 
B is located at a distance of 5 mm from the surface of the cylinder, which has a diameter of 
D = 12-7 mm. Two small mirrors were located a distance of 1190 mm away from the 
centerline of the cylinder. Each of these mirrors had dimensions of 64 mm x 114 mm; they 
reflected the images from the upper and lower regions of the cylinder to the bias mirrors of 
each of the mirror-camera systems (a) and (b). The total distance from the plane of the laser 
sheet B to the image steering mirror within the wave tank, then to the bias mirror, and 
through the lens of the camera to the camera back was 1580 mm. For each of the cameras 
(a) and (b), the value of magnification was M = 1:11. The field of view in the plane of the 
laser sheet was 264 mm x 396 mm. Considering both of the adjacent images together, a total 
of approximately 12000 velocity vectors were obtained. Both cameras (a) and (b), and their 
respective bias mirrors, were synchronized using a laboratory microcomputer. The fields of 
view of the images acquired by cameras (a) and (a) were adjusted such that they overlapped 
by 2D in the plane of the laser sheet. This approach allowed acquisition of two instan- 
taneous images covering the entire span of the cylinder of submerged length L = 700 mm 
and aspect ratio L/D = 55. 

A representative pattern of instantaneous velocity vectors in the crossflow plane is 
illustrated in the left image of Figure 4. It is evident that, at this instant, the velocity vectors 
have a substantial vertical component in the region beneath the free surface due to the 
orbital-like motion of the incident wave. Of particular interest herein is the manner in which 
the transverse (horizontal) velocity component varies along the span of the cylinder. As 
confirmed by independent vorticity measurements, the direction of the local transverse 
velocity corresponds to the direction of the vortex formation in the wake of the cylinder. 
When a given pattern of vortices forms, it sweeps fluid in a preferred direction from the base 
of the cylinder. Contours of constant transverse (horizontal) velocity are indicated in the 
right image of Figure 4. It is evident that these contours take on a quasi-periodic variation 
along the span of the cylinder. They have a longer wavelength between successive zero 
crossings at locations immediately beneath the free surface, where the orbital trajectory of 
the incident wave has a significant vertical component. On the other hand, this distance 
between zero crossings is relatively small near the bottom of the cylinder, where the incident 
wave is essentially unidirectional. Other admissible patterns of the near-wake, as well as 
aspects related to the measurement of the instantaneous transverse and in-line forces, are 
described by Yang & Rockwell (2000). 

5. DUAL VIEW SYSTEM FOR FLOWS CONTAINING LONG BODIES 
ALONG THE AXIS OF VIEW 

A cylinder in a wave gives rise to patterns of vortex formation that exist over the entire 
region about the periphery of the cylinder. That is, the vorticity concentrations are not 
swept away from the cylinder by a steady current. A single camera cannot adequately 
capture the features of the flow field surrounding the cylinder when the distance from the 
end of the cylinder to the cross-section of interest is relatively large, especially for the case 
where elastic oscillations occur. This situation arises for the case of a long vertical cylinder 
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Figure 4. Patterns of instantaneous velocity 
determined from PIV measurements in laser 
sheet B in Figure 3. The left image shows 
patterns of velocity vectors, while the right 
image exhibits contours of constant hori- 
zontal velocity. Thick and thin white lines 
represent, respectively, positive (rightward) 
and negative (leftward) horizontal velocity. 
These patterns of velocity indicate the local 
direction of transverse vortex shedding in 
the near-wake of the cylinder. Value of 
Keulegan-Carpenter number is KC = 10. 
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in a wave tank. Quantitative imaging in a horizontal plane immediately beneath the 
free-surface must be accomplished through the bottom of the wave tank, due to refraction 
effects associated with the undulating free surface. 

Major issues are the manner of generation of vorticity concentrations from the oscillating 
cylinder and the rate of decay of quasi-two-dimensional concentrations in the wave field. 
The physics of vortex formation from an oscillating, cantilevered vertical cylinder in a wave 
has been characterized by Borthwick & Herbert (1988) and Kaye (1989). They employed 
qualitative visualization to observe patterns of vortex formation at the free surface. Inter- 
pretation of this type of vortex formation, based on quantitative imaging, has yet to be 
undertaken. In doing so, it is necessary to account for the instantaneous relative velocity of 
the wave with respect to the cylinder when making an assessment of the instantaneous 
patterns of vorticity, which, in turn, are intimately related to not only the cylinder 
trajectory, but also to the forces on the cylinder. 

Figure 5 shows side and plan views of the elastically mounted cylinder system. In essence, 
the vertical cylinder was attached to a lightweight hover plate, which remained suspended 
above a system of approximately 300 mini-jets that emanated from the top surface of 
a circular air plenum in the form of a donut. Four springs were employed to provide the 
desired stiffness. The system stiffness is essentially invariant in the circumferential direction. 
The cylinder is made of hollow Plexiglas in order to minimize its mass. At one section of the 
cylinder, a nonrefractive window, similar to that in Figure 1, is employed to allow 
illumination about the entire periphery of the cylinder. A horizontal laser sheet was 
generated immediately beneath the free surface of the wave by employing a long rectangular 
beam steering mirror. This mirror had dimensions of 610 mm x 102 mm. The scanning laser 
beam from the multi-faceted polygon mirror was reflected from this first-surface mirror at 
an angle of 90°, thereby forming the horizontal, scanning laser sheet. The scanning rate was 
180 c/s. Two camera-bias mirror systems were employed for image acquisition, as indicated 
in Figure 5. The centerlines of the lenses of the two-camera system were displaced from each 
other by a distance of 140 mm. This spacing was found to be optimal for viewing the 
complete field about the periphery of the cylinder. The distance from the plane of the laser 
sheet to the back of each camera was 1180 mm. Both camera-bias mirror systems were 
synchronized using the laboratory microcomputer. Taking the images of the two cameras 
together, the field of view was 262 mm x 314 mm in the physical plane of the laser sheet. 
A total of 1650 velocity vectors were typically acquired in each camera view, giving a total of 
approximately 3000 vectors, excluding duplicate vectors in the region of image overlap. 

Figure 6 shows a representative pattern of vorticity concentrations, along with the 
trajectory of the cylinder, which has the form resembling the outline of a "butterfly" pattern. 
The instant of image acquisition corresponds to the solid symbol 1 on the trajectory. At this 
instant, the cylinder is undergoing the initial phase of its transverse motion across the wave 
tank. The symbol U represents the instantaneous wave velocity, Vc is the cylinder velocity, 
and VR is the relative velocity of the wave with respect to the cylinder. Vorticity concentra- 
tions C and A were shed during previous portions of the trajectory and concentrations B are 
in the process of formation from the surface of the cylinder. A full description of the 
admissible patterns of vortex formation, in relation to the instantaneous values of VR, is 
given by Downes & Rockwell (2000). 

6. CONCLUDING REMARKS 

The approaches of high-image-density particle image velocimetry described herein hope- 
fully will serve as a stimulus for further efforts, not only for the wake of a circular cylinder, 
but also for a broader range of flow systems that involve generation of unsteady separated 
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Figure 5. Schematics illustrating plan and side views of elastically mounted cylinder in conjunction 
with laser illumination for high-image-density particle image velocimetry. The plan view is upwards 

through the bottom of the wave tank. 
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Figure 6. Patterns of positive (thick line) and negative (thin line) vorticity from a cylinder 
undergoing oscillations in a "butterfly" trajectory, as indicated in the inset. The location of the 
cylinder corresponds to point 1, which is designated by the black dot. Minimum vorticity level is 
comin = 5 s"l and incremental vorticity is Act» = 2-5 s "1. Velocity vectors correspond to: Vc = velocity 
of the cylinder; U = particle velocity of undisturbed region of wave adjacent to cylinder; and 

VR = relative particle velocity of wave with respect to the cylinder. 

flow in conjunction with unsteady loading, vibration, and noise. These methods are 
intended to serve as a complement to measurements of unsteady forces and surface 
pressures, though certain information on the surface loading can be estimated directly from 
this type of quantitative imaging, provided that the near-wake can be approximated as 
two-dimensional. Irrespective of the complexity of the wake structure, this type of imaging 
is also intended to provide guidance for development of corresponding numerical 
simulations. 

The first two approaches, which involve imaging in orthogonal planes and in dual planes 
located adjacent to each other, aim to define the critical features of spanwise three- 
dimensionality, both for stationary and oscillating bodies. Although a full volume repres- 
entation has not been addressed, acquisition of a space-time sequence of such images can 
lead to construction of a pseudo-volume representation, which can provide further insight 
into the three dimensionality of the wake. Furthermore, both of these approaches directly 
yield patterns of instantaneous velocity and vorticity over a defined plane. Using a sequence 
of images, it is possible to calculate, for example, the spanwise spatial correlation or the 
cross-spectral density in a direction parallel to the axis of the cylinder. Such calculations 
could be coupled with classical, time-averaged spanwise correlations of surface pressure, as 
well as measurement of forces. This type of comparison can provide insight into the physics 
related to traditional measurements of surface loading. 

The third approach described herein involves imaging in dual planes, with emphasis 
on the quasi-two-dimensional features of the cylinder wake. It involves synchronized 
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acquisition of two images, which cover the entire periphery of an oscillating body, and aims 
to overcome the occurrence of blind regions or shadows due to blockage of the cylinder. 
This issue is particularly important for oscillatory flows past a stationary body, or converse- 
ly an oscillating body in quiescent fluid, both in absence of a steady current. Knowledge of 
the patterns of vorticity in the entire domain about the body, as a function of time, can 
provide insight into the rate of decay of peak vorticity and circulation of individual vorticity 
concentrations in either a unidirectional oscillatory flow or an inherently three-dimensional 
wave field. 

All of the foregoing approaches are under continuous development. Part of this effort 
involves their implementation for digital camera systems. Rapid advances in both spatial 
and temporal resolution of image acquisition systems are expected in coming years. 
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The complex Stuart-Landau equation models a prototypical Hopf bifurcation in which, when 
the control parameter exceeds a critical value, the null solution bifurcates into a finite amplitude 
time-periodic solution. We study the response of this equation to time-harmonic forcing in the 
subcritical regime (i.e., before the bifurcation). We show that when a second parameter in the 
Stuart-Landau equation passes a critical value, a portion of the solution surface as a function of 
forcing frequency and amplitude becomes multivalued. For instance, at a fixed forcing ampli- 
tude, one finds a well-defined range of frequencies over which two stable periodic responses may 
coexist, having different amplitudes. We apply this result to predict the behaviour of the wake 
downstream of an oscillating cylinder, and compare the predictions with experimental and 
computational observations of such a wake. © 2001 Academic Press 

1. INTRODUCTION 

THE COMPLEX STUART-LANDAU EQUATION has been widely used to model the shedding 
of vortices in the two-dimensional wake of a cylinder at low Reynolds numbers. Specifically, 
the different coefficients of the model have been measured from experiments (Sreenivasan 
et al. 1986; Provansal et al. 1987; Schumm et al. 1994; Albarede & Provansal 1995) and 
from numerical simulations (Dusek et al. 1994). Two-dimensional flows past a laterally 
oscillating cylinder have also been the subject of extensive research. In particular, the 
experiments of Bishop & Hassan (1964) have clearly shown jumps and hysteresis loops in 
the resonance curves for the amplitude and the phase of the vortex shedding. These 
resonances appear for particular excitation frequencies, and Stansby (1976) has shown the 
existence of resonant horns where the wake is locked to the cross-flow oscillation of the 
cylinder. Different modes of vortex shedding can be associated with these lockings 
(Williamson & Roshko 1988); in particular, the classical Benard-von Kärmän wake can be 
excited among other nonsymmetric wakes. Visualization of moderate Reynolds number 
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forced wakes shows a jump in the phase of the vortex shedding when the frequency of the 
excitation passes through the resonance frequency (Ongoren & Rockwell 1988). The 
different phase lags between the laterally oscillating cylinder and the vortex shedding have 
been associated with a competition between several mechanisms of vorticity generation 
(Blackburn & Henderson 1999). 

The present study is devoted to the theoretical analysis of the response of the forced 
Landau equation and to the comparison of its predictions with experiments and numerical 
simulations. We focus our attention on the subcritical regime, where the periodic solution is 
damped when it is not excited. To our knowledge, the only attempt at modelling the 
periodically forced wake by a forced Landau equation below the threshold has been by 
Provansal et al. (1987). In this case, the forcing term which is added to the model is a simple 
harmonic term, having a given amplitude and frequency. Above the threshold, additional 
third-order terms are involved in the amplitude equation associated with the forced Hopf 
bifurcation (Walgraef 1997). The solution is much more intricate in this case with the 
possibility of the appearance of higher-order resonances and biperiodic behaviour. A com- 
plete mathematical analysis of the different possibilities has been provided by Gambaudo 
(1985). In addition, numerical solutions of the forced Stuart-Landau equation in the 
supercritical regime have been obtained (Olinger 1993) to establish that its underlying 
dynamics are similar to those of the circle map. 

In our work, we restrict our analysis to the subcritical regime of the Stuart-Landau 
equation where locking is expected (Gambaudo 1985). We find that, due to the cubic 
nonlinearity of the Landau equation, the resonance curve can exhibit a hysteresis loop in 
a certain range of parameters. This behaviour is similar to the response of a forced harmonic 
mechanical pendulum (Landau & Lifshitz 1976). We then compare our predictions against 
experiments and numerical simulations. In both cases, we study the two-dimensional wake 
of a circular cylinder subject to cross-flow oscillations. Although the predicted resonance 
below the Benard-von Kärmän threshold is observed, no evidence of hysteretic behaviour 
has yet been seen in the experiments and computations. 

2. THE FORCED STUART-LANDAU EQUATION 

The complex Stuart-Landau equation with time-periodic forcing is given by 

<L4 
— = (aR + iaj)A - /R(l + \c)\A\2A + Feim', (1) 

in which A is a complex-valued function of time t and the parameters aR, au {R {{R > 0) and 
c are all real. The last term in this equation represents the forcing. We take the forcing 
amplitude F and frequency co to be real. 

In the absence of forcing, equation (1) represents the normal form of the Hopf bifurcation 
which occurs at the critical value of the parameter aR = 0. For aR < 0, the null solution 
A = 0 is a stable solution of the unforced equation. For aR > 0, this base state loses its 
stability and the solution settles down to a time-periodic state with constant amplitude 
\A\ = (aR//R)112, orbiting the origin in the complex plane with angular velocity a7 - aRc. 
Note that parameter (R is taken to be positive. The time-scale for the transient approach to 
this final periodic state is given by aR 1. 

In order to investigate the forced response of the system, we first non-dimensionalize 
equation (1) so as to minimize the total number of parameters that need to be studied. Using 
the natural scales of the system which are evident in the supercritical solution just discussed, 
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and subtracting the constant rotation imparted by parameter ax, we define the following 
dimensionless (primed) variables: 

f = \aR\t, (2) 

A'(i')EE(VM)1/2^(0e-ia'', (3) 

F' = \aR\-H^RAaR\)U2F, (4) 

co' ^{co-a^/la^. (5) 

Upon substitution into equation (1) we obtain 

AA' 
— = sgn(aR) A'-{1+ ic) \A'\2A' + F'sT<, 

in which sgn (aR) is the sign of the Hopf bifurcation parameter aR. In what follows, we shall 
focus our attention on the forced response of the subcritical state aR < 0. This corresponds 
to the vortex shedding experiments and simulations which are also being reported in 
Sections 3 and 4 of this paper. The supercritical case exhibits a much richer (and more 
difficult to analyse) variety of solutions; see Gambaudo (1985) for a detailed discussion. 
Considering the subcritical case aR < 0 only, we rewrite the last equation and drop the 
primes from all the variables for clarity to obtain 

AA 
^-=-A-(l+ic) \A\2A + FeiM(. (6) 
At 

Three real dimensionless parameters, c, F and co, entirely determine the solution A(t). 
Parameter c is an intrinsic property of the unforced system; for the supercritical state, it 
would determine the frequency of the solution after the Hopf bifurcation. Parameters F and 
a> are simply the amplitude and reduced frequency of the time-periodic forcing. In the 
following, we restrict our attention to the case F > 0. The case of negative F is identical, but 
with a corresponding sign change in A (i.e., with a phase difference of n). 

2.1. PHASE-LOCKED SOLUTION 

To obtain two real equations from the complex equation (6), we first write A(t) in the form 

A(t) = p(t)em), 

where p(t) = \A(t)\ is the real and nonnegative amplitude of the complex function A and 4>(t) 
is its phase (also real). Substitution into equation (6) results in the pair of equations 

p/p= -l-p2 + (F/p)cos(cot-(l>), (7) 

0 = - cp2 + {F/p) sinM - 4>\ (8) 

in which the overdot represents the time derivative. We now seek a solution of constant 
magnitude whose phase is locked with the forcing, lagging behind it with constant angle 0O. 
In other words, we seek a solution of the form p = p0 and cj) = cot — (p0, where p0 and <f>0 are 
constants. Such a solution would have to satisfy 

0= -I-p2
0+(F/p0) cos fa, (9) 

oo= -cp2
0+(F/p0)sm<j)0. (10) 
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Upon elimination of c60 between equations (9) and (10) (by collecting the trigonometric 
terms on one side, squaring and adding the two equations), a single algebraic equation for 
the amplitude p0 is readily obtained. Upon denning x = pi, this equation reads 

x[(l + x)2 + (co + cx)2~\ = F2, (11) 

which is cubic in x, with its solution depending on the three parameters, c, F and co, of the 
original system. Of course, the only solutions which are acceptable are real and non- 
negative. Furthermore, once a solution x = p2 has been found, the phase-lag c/>0 can always 
be obtained by solving 

co + ex 
tan0o=TT-. (12) 

Being a cubic equation with real coefficients, equation (11) may have up to three real 
solutions, depending upon the parameters of the system. The parameter ranges for which 
three real and positive solutions exist are of particular interest, since they suggest the 
possibility of having multiple states of the system under identical forcing conditions. 
Fortunately, equation (11) is simple enough that a complete analysis as a function of the 
three independent parameters c, F and co is possible; this is what we now attempt. 

Denote the left-hand side of equation (11) by g(x;c,co), i.e., 

g(x;c,eo) = x[_(\ + x)2 + (co + ex)2]. (13) 

The amplitude of the phase-locked solution is thus obtained from the positive solutions x to 
g{x) = F2. Graphically, this can be achieved by plotting the function g(x) (for a given set of 
parameters c and co) over positive x and considering the intersections of this graph with 
horizontal lines which are drawn at height F2 above the x-axis. As it turns out, the cubic 
function g(x) [which is asymptotic to (1 + co2)x for small x and to (1 + c2)x3 for large x] 
can only have one of the two forms depicted in Figure 1. Namely, over the positive range of 
x, the function g(x) is either monotonically increasing, as depicted in Figure 1(a), or it goes 
through a local maximum and minimum prior to increasing indefinitely as x increases, as 
drawn in Figure 1(b). In the latter case, there is clearly a pair of values, Fmin and Fmax, such 
that for Fmin < F < Fmax, the equation g(x) = F2 admits three positive solution for x. 

To identify the region of the (c, co) parameter space within which the function g(x;c,co) 
has a shape similar to that in Figure 1(b), let us find the position of the local maximum and 
minimum of g(x). These are found by setting 

-£ = 3(1 4- c2)x2 + 4(1 + cco)x + (1 + co2) = 0. (14) 

As such, the local extrema are located at 

-2(1 + ceo) ± ^4(1 + ceo)2 - 3(1 + c2)(l + co2) 
x±= WT7) • (15) 

Evidently, in order that both x_ and x+ be positive, i.e. to have a local maximum and 
minimum in g(x) over positive x, we must require that 

- 2(1 + ceo) > 0, (16) 

4(1 + ceo)2 - 3(1 + c2)(l + co2) > 0. (17) 

Condition (16) requires ceo < — 1 which means that co and c must be of different signs and 
the magnitude of co must be larger than |c[_1. Simultaneously, condition (17) must be met. 



HYSTERETIC RESPONSE OF THE FORCED STUART-LANDAU EQUATION 449 

?« 

(a) (b) 

Figure 1. Possible shapes of the cubic function g{x): (a) single solution to g(x) = F2; (b) multiple solutions to 
g(x) = F2. 

The latter can be written as a quadratic function of co in the form 

(c2 - 3) CD
2
 + Scco + (1 - 3c2) > 0. (18) 

To analyse the parameter space further, we now restrict our attention to the case c < 0. 
There are two reasons for doing so. First, parameter c for cylinder wakes is known to be 
negative. Secondly, since parameters c and co appear throughout the above only in the 
forms co2, c2 and ceo, any statement which is true for a given pair of values (c, co) is also true 
for the pair ( -c, -co). Therefore, the behaviour for positive c can be directly inferred from 
the results obtained for c < 0. 

Based upon condition (16), for c < 0, multivalued solutions to g(x) = F2 can only exist if 
co > 0. So, let us now consider the left-hand side (lhs) of condition (18) for positive co. The 
coefficient of co2 determines whether the parabola obtained when this lhs is plotted against 
positive co points upward or downward. There are three possibilities to explore: (i) When the 
coefficient (c2 - 3) is negative, i.e., for - ^3 < c < 0, the lhs of equation (18) monotonically 
decreases from (1 - 3c2) to - oo, as co goes from 0 to oo. Even if this lhs starts out being 
positive at co = 0 [which is the case when (1 - 3c2) > 0], it will eventually become negative 
as co gets larger. Recalling that condition (16) required the magnitude of co to exceed | c |"x in 
order to have multivalued solutions, it is easy to show that in this case, conditions (16) and 
(18) cannot be simultaneously satisfied and the solution to g(x) = F2 is always single- 
valued, (ii) When the coefficient (c2 - 3) vanishes, i.e., when c = -,/3, the lhs of equation 
(18) becomes a straight line when plotted against co, and it is always negative for positive 
values of co. Therefore, condition (18) cannot be satisfied and the solution to g(x) = F2 

remains single-valued, (iii) Finally, when the coefficient (c2 - 3) is positive, i.e., when 

c < -yfi, the lhs of equation (18) starts out negative at co = 0, but it will eventually cross 
zero and remain positive as co increases. Hence, condition (18) will be met for co larger than 
a critical value (which is a root of the lhs, given explicitly below). In that range of co, the first 
condition which required that co>\c\~1 is also satisfied and, therefore, multivalued 
solutions to g{x) = F2 can exist. 

These results can be summarized as follows. In order for the cubic equation g(x;c,co) = 

F2 to admit multivalued solutions for x, parameter c must satisfy c < — N/3 and co must be 
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(a) (O (b) 

Figure 2. The frequency-response curves, x versus to: (a) single-valued case, (b) multivalued case. 

larger than the positive root (in co) of the lhs of equation (18), i.e., 

c < — yjj>    and    co > r-     —"^ Ö^rit   = 
c + 

(19) 

For any (c, co) which satisfy conditions (19), the graph of the function g{x) resembles Figure 
1(b). There will then exist the pair of values 

-Fmin = y/g(x+;c,co)   and   Fmax = ^/g(x-; c,co) (20) 

with x ± given by equation (15), such that for Fmin < F < Fmax, the equation g(x; c, co) = F2 

possesses three positive solutions for the amplitude x = p2. At exactly the critical value 
co = cocrit, i.e., just before multivalued solutions emerge, the corresponding critical forcing 
amplitude is given by 

F2 ■ — 1  cnt   — 
8   (c2 + l) 

3,/3 (c + V3)3' 

2.2. RESONANCE 

For a fixed forcing amplitude F, as the forcing frequency co varies, the amplitude p0 = y/x 
of the phase-locked solution also varies. The graph obtained by plotting the response of the 
system (characterized by p0 or x) as a function of the forcing frequency co is the frequency- 
response curve. Note that under the conditions described above, this curve may be 
multivalued over a certain range of frequencies. Let us now consider the problem of finding 
the forcing frequency at which the response has its largest amplitude. We define this as 
"resonance" for our nonlinear oscillator. 

Equation (11) can be thought of as providing an implicit solution for the response x as 
a function of frequency co for a fixed value of the forcing amplitude F. Typically, the 
frequency-response curves which result may resemble those in Figure 2, depicted here 
under the conditions when the solution is single-valued, [Figure 2(a)], or multivalued 
[Figure 2(b)]. 

In either case, the maximum in the curve (resonance) is obtained by finding the frequency 
at which the derivative dx/dco vanishes. Given the implicit solution g(x;c,co) = F2, for 
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constant values of parameters c and F, this derivative is found to be 

8x dg/dco 

dco dg/dx 
(21) 

The numerator dg/da> is simply given by 2x(co + ex), indicating that resonance occurs when 
(o = — ex. Therefore, at resonance, equation (11) reduces to 

xres(l+xres)
2 = -F2. (22) 

Once the solution xtes(F) to this equation is obtained, the resonance frequency as a function 
of forcing amplitude is given by 

(Ores(F)= -cxres(F). (23) 

For large F the solution behaves as xres ~ F2/3, whereas for small F its behaviour is like 
*res ~ F2. More generally, the solution to the cubic equation (22) is given by 

where 

s(F) = i^1'3+f^-1/3-|, (24) 

W = 8 + 108F2 + 12(12F2 + 81F4)1/2. (25) 

As such, for a fixed c, there is a well-defined resonance curve in the (co, F)-plane over which 
resonance occurs and the amplitude p0 of the solution is a maximum. An explicit graph of 
this curve for a typical value of c will be presented in a later subsection. 

Since at resonance, a> + ex = 0, the phase-lag of the resonant solution is found from 
equation (12) to be <£0 = 0 provided we take F > 0; note that besides satisfying (12), the 
phase-lag must also be consistent with {F/p0) sin 4>0 = co + ex and (F/p0) cos 4>0 = 1 + x. 
Upon recalling that in the Stuart-Landau equation, the function A can be thought of as 
being proportional to "velocity" rather than "displacement", this behaviour is seen to be 
consistent with standard linear oscillators for which the displacement lags the forcing by 
a phase of n/2 while the velocity and the forcing are in phase at resonance. 

We also make the observation that the points at which the denominator in equation (21) 
vanishes are where the derivative of the frequency-response curve becomes infinite. These 
points are identified by the vertical dashed lines in Figure 2(b). Evidently, having two such 
points is a prerequisite for having a range of frequencies over which the solution is 
triple-valued. The vanishing of this denominator is precisely the condition we posed earlier 
[cf. equation (14)] to locate a local maximum and minimum of g(x) over positive x. It is also 
possible to demonstrate that in the multivalued frequency-response curve, [Figure 2(b)] the 
portion of the curve connecting the two turning points (tangent to the dashed vertical 
curves) is unstable, whereas the upper and lower segments of this curve are stable. 

2.3. RESULTS FOR c = - 3 

The small dimensionless parameter c in the Stuart-Landau equation describing the wakes 
of cylinders has been measured for cylinders of different aspect ratios. For an aspect ratio of 
10, its value turns out to be approximately c = — 3 (Albarede et al. 1995; Peschard 1995). 
The experimental portion of this work deals with subcritical uniform flow past a cylinder of 
aspect ratio 10; therefore, let us consider more precisely the nature of the solution at 
c= -3. 
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Figure 3. The minimum and maximum values off (solid lines) which bound the region in which the solution is 
multivalued for c = — 3. The dashed line represents the resonance curve at c = — 3. 

Since this value of c is less than the critical value — ,/3, we know that for large enough 
frequencies, we will always have a window of forcing amplitudes over which multivalued 
solutions exist. The critical value &)crit which needs to be exceeded is given by equation (19) 
and turns out to be cocril x 4-8868. The corresponding critical value of the forcing at this 
point turns out to be Fcrit « 2-7482. For any co larger than cocrit, there exist lower and upper 
bounds Fmin and Fmax> given by equation (20), such that for values of F which are in 
between, the solution surface is multivalued. In the (co, F)-plane, we can trace out the two 
curves which provide the bounds on F as a function of co. We have done this in Figure 3 for 
c = — 3. The two solid lines which form a cusp at the critical point (a>crit,Fcrit) = 
(4-8868,2-7482) in this figure represent these bounds. 

Also in Figure 3, we have traced out the resonance curve given by equations (22), (23) and 
(25), for the case c = — 3. The resonance curve enters the multivalued region as co and 
F increase and remains there. That is, the maximum point in Figure 2(b) lies somewhere in 
between the two turning points with infinite slopes (when co and F are large enough). Lastly, 

we show in Figure 4, the solution surface itself (p0 = ^Jx versus co and F) for c = — 3 
obtained by plotting a family of solutions at different frequencies as the forcing amplitude is 
varied. It is clear that surface is folded and above the region bounded by the solid curves in 
Figure 3, the solution is triple-valued. Of the three solutions, those with the largest and 
smallest amplitudes are stable while the one in the middle is unstable. 

3. EXPERIMENTAL OBSERVATIONS 

As explained before, the parameter c is a constant which characterizes the limit cycle which 
appears at the Hopf bifurcation. For the Benard-von Kärmän wake, it has been measured 



HYSTERETIC RESPONSE OF THE FORCED STUART-LANDAU EQUATION 453 

0     0 

Figure 4. The solution surface p0(a>,F) at c = — 3. 

both experimentally and numerically. However, this value varies with the aspect ratio of the 
cylinder that generates the wake. In our experiments, the cylinder has a diameter of 2 mm 
and a length of 20 mm, giving an aspect ratio of 10 which, according to Peschard (1995) and 
Albarede et dl. (1995) gives a value for c close to —3. In this case, the critical Reynolds 
number for the appearance of the vortex street is about 70. The flow is generated in a water 
tunnel and the cylinder is mounted on a support which can oscillate at a given frequency by 
the use of an electric motor. In this study, only visual observations will be reported. These 
visualizations are made by oxidation of a tin wire. As predicted by our theoretical analysis, 
a strong resonance is seen when the forcing frequency is close to the natural frequency of the 
wake. Figure 5 presents snapshots of the wake for different cross-flow oscillation frequen- 
cies and for a Reynolds number equal to 60. On these images, the amplitude of the cylinder 
oscillation is 3 mm (the corresponding nondimensional value for F is not known a priori 
because we do not know how much energy is actually transmitted to the wake when 
oscillating the cylinder). The resonance phenomenon is clearly evidenced by the shedding of 
strong vortices when the excitation frequency approaches a value close to 1 Hz. In the figure 
caption, we also indicate the values of the non-dimensional frequency calculated using the 
expected parameters of the Landau equation [see Peschard (1995), Olinger (1993)]. Scann- 
ing the forcing frequency up and down does not reveal (at least visually) any hysteretic 
behaviour. More experiments would seem to be necessary to confirm this apparent devi- 
ation from the Landau model prediction. Let us note in particular that the strong spatial 
deformation of the wake, as it is visualized in Figure 5, is not taken into account in the 
model. This effect might be avoided when applying a very weak forcing very close to the 
threshold where the receptivity of the wake is large. 
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Figure 5. Visualization of the wake at Re = 60 for different exciting frequencies: (a) 0-52 Hz (co = - 10); (b) 
0-70 Hz (co = - 7); (c) 0-95 Hz (co = - 2-4); (d) 1-4 Hz (co = 5-6). 

4   NUMERICAL SIMULATIONS 

Two-dimensional numerical simulations were also undertaken to explore the frequency 
response. These were done with a spectral-element code described in Thompson et al. 
(1996), which employs a similar method to that used to examine the unforced post- 
transition behaviour in Dusek et al. (1994). Initial runs were performed to verify the chosen 
domain size and mesh point distribution and density were adequate. 

The system was forced by applying an oscillating cross-flow velocity at the inlet and side 
boundaries of the domain, i.e., at the inlet and side boundaries u = (1, (B/co) sin (cot)). The 
cross-flow amplitude is divided by co to maintain a constant acceleration forcing amplitude 
as dictated by the Landau model. It is thus expected that there is a linear relationship 
between B and F regardless of frequency. Note that in the numerical simulations, the 
governing equations are rendered dimensionless using the diameter of the cylinder as the 
length scale and the ratio of that diameter to the uniform flow velocity as the time scale. 

Initially, runs were performed to determine the values of the critical parameters in the 
Landau model. Simulations at Re = 50, 48 and 45, the first two starting from the two- 
dimensional steady flow and the last from the time-periodic flow at Re = 48, allowed the 
transition Reynolds number to be determined as Recrit = 46-7 from interpolation of the 
measured growth rates. The dimensionless Landau constant was also evaluated for Re = 50 
and 48 by determining the difference between the frequency of oscillation in the linear 
regime and at saturation. As in Dusek et al. (1994), the response was monitored by the 
vertical velocity at various points in the domain. For these two cases, the Landau constant 
was determined to be c(Re = 50) = - 2-52 and c(Re = 48) = - 2-78. Thus, it is less than 
the critical value of ccrit = — ^ß from the theoretical analysis [equation (19)] in this paper 
and consistent with estimates from Dusek et al. (1994). To examine the response in the 
subcritical regime, simulations were performed at Re = 44. At this Reynolds number, the 
model parameters (scaled with the time-scale mentioned above) can be estimated by 
extrapolation to be at = 0-3648, aR = - 0-0057, c = - 3-3 and lR = 0-32. Again, the critical 
parameter is the Landau constant, c, which indicates that the system should be hysteretic if 
the forcing is above a critical value. The frequency response was determined numerically by 
fixing the forcing level and stepping up from one forcing frequency to another after the 
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Figure 6. Numerical resonance curves for forcing amplitudes (B) of 001 (crosses), 0-03 (triangles), 0-10 (circles) 
and 0-30 (squares). The Reynolds number is 44. The curves show the amplitude of the vertical velocity component 
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Figure 7. Vorticity plots of the oscillating wake. The forcing amplitude is set to 0-01. The centre plot shows the 
response at close to the optimal forcing frequency. The top and bottom plots show the wake for forcing frequencies 

25% below and 25% above the resonant frequency, respectively. 

periodic asymptotic solution had been reached. This response is shown in Figure 6 for 
forcing amplitude B = 0-01, 0-03, 0-10 and 0-30. These curves show the amplitude of the 
vertical velocity component at a point 4 radii downstream from the cylinder centre on the 
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symmetry axis. The nonlinear shift of the maxima, as predicted by equation (23) and 
observed in the experiments, is visible. Note that the sign of this deviation (here towards 
higher frequencies) is opposite to that of parameter c in agreement with predictions. 
Although the shift is in the right direction, it does not show the expected quadratic 
behaviour predicted by equation (23) for low forcing amplitudes. 

Figure 7 shows the wake vorticity pattern corresponding to forcing (from top to bottom) 
at 25% below, equal to, and 25% above the resonant frequency. The asymmetry of the 
response—characteristic of the presence of odd terms in the dynamical system—is again 
evident through these visualizations; however, no hysteresis is observed. 

5. CONCLUSION 

The mismatch between both the experimental and numerical results, and the theoretical 
analysis, is surprising. The study of Dusek et al. (1994) indicates that the post-transition 
behaviour obeys the unforced Landau equation to a high degree of accuracy. One possible 
explanation is that higher-order terms in the Landau equation are not necessarily small and 
may contribute to the saturated behaviour. This is suggested by the failure of the numerical 
frequency-response curves to conform to the predictions of equation (23). If quintic and 
higher-order terms cannot be neglected in equation (1), they will cause deviations from the 
current predictions; preliminary numerical studies indicate that the predicted hysteresis can 
easily be destroyed by the additions of such terms. Moreover, the value of c in the numerical 
simulations was estimated indirectly based on the observed amplitude and frequency at 
saturation; hence it relies on the higher-order terms being negligible. 

Because the scaled critical value off only depends on c, equations (3) and (4) suggest that 
the dimensional critical forcing and the response amplitude both approach zero as the 
Reynolds number approaches the transition value. In turn, this means that close to the 
critical Reynolds number there should be some range of forcing for which high-order terms 
can be neglected and hysteresis will occur, provided c < —-y/3. The numerical results 
suggest that this range may be very small. Unfortunately, close to the transition Reynolds 
number, and for very small forcing amplitudes, it takes many cycles for the transient 
response to decay and hence it is difficult to explore this region numerically. We are 
currently attempting to obtain direct measures of the critical parameters of the Landau 
model to further refine the predicted behaviour (if necessary including the effects of 
higher-order terms). It will then be possible to better test the validity of the model by careful 
comparisons with the numerical frequency-response curves. These results will be reported 
elsewhere. 
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The paper is concerned with some aspects of the fluctuating lift acting on a stationary circular 
cylinder in cross flow, in particular effects of Reynolds number in the nominal case of a large- 
aspect-ratio cylinder at small to vanishing blockage and free-stream turbulence, respectively. 
The Reynolds number range covered is from about Re = 47-2-2 x 105, i.e., from the onset of 
vortex shedding up to the point where a subsequent increase in Re gives a rapid fall in the mean 
drag coefficient, the all-familiar drag crisis. A review of 2-D numerical simulations suggests that 
the r.m.s. lift coefficient (CL.) within the laminar shedding regime can be approximated as 
ye/30 + s2/90, where e = (Re - 47)/47. For all Reynolds numbers above the inception of 
three-dimensional flow instabilities, i.e., for Re > (160-190), the near-wake flow is supposed to 
be partially correlated along the span. The lift fluctuations on a finite (spanwise) length of the 
cylinder are then not only dependent on the sectional lift variations but also on the spanwise 
correlation of the lift-related flow. At around Re = 230, which is the approximate onset Re for 
mode B instability, the one-sided spanwise correlation length (A) is about twice the wavelength 
of the most unstable mode A instability, A/d « 7. Up to Re = 260-300 the spanwise correlation 
increases dramatically, the indicated peak value being A/d « 30. From 3-D numerical simula- 
tions, the corresponding CL. is approximately 05, which coincidental^ is about the same value 
as found experimentally just before the rapid fall when entering the critical regime. Dramatic 
variations of both sectional CL, and A/d occur within the range Re =; 0-3 x 103-2-2 x 105. For 
instance, at around Re = 1-6 x 103 a local minimum of about CL, = 0045 is indicated, at 
Re ~ 16 x 103 the corresponding CL.-value is ten times higher. At Re = 5-1 x 103 there is a peak 
in spanwise correlation, A/d «15. © 2001 Academic Press 

1. INTRODUCTION 

THE FLOW AROUND A CIRCULAR CYLINDER has been the subject of intense research in the past, 
mostly by experiments but also by using numerical simulation. The flow situation is of 
relevance for many practical applications, e.g. offshore risers, bridge piers, periscopes, 
chimneys, towers, masts, stays, cables, antennae and wires. During the last 15 years there 
has been an accelerating interest in bluff body wakes, in particular so for the wake flow 
generated by the circular cylinder. Important findings and developments have been made, 
especially with regards to three-dimensional effects, physical and theoretical modelling, flow 
instabilities, numerical simulation and flow control, see Williamson (1996a). 

A perspective outlook on bluff body flows in general and flow around circular cylinders 
in particular is presented in Roshko (1993). Despite the above findings, some of which have 
been made after the publication of Roshko's outlook paper, it seems that still "the problem 
of bluff body flow remains almost entirely in the empirical, descriptive realm of knowledge" 
(Roshko 1993). Roshko, a modern pioneer in this field, also wrote: "Finally, we must 
keep in mind the basic problem, to find suitable models for the forces on bluff bodies" 

0889-9746/01/040459 + 11 $35.00/0 © 2001 Academic Press 
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(Roshko 1993). However, there is no modelling of fluctuating lift to be found in this work. 
Such modelling needs to take into proper account the supposedly subtle aspects of 
inherently three-dimensional, transitional and lift-related flow features present in the 
near-wake. At present, at least for turbulent shedding conditions, we do not even have 
a conceptual description of these intriguing flow features. The present work should be seen 
primarily as an attempt to find a better representation of lift-related quantities, as a function 
of the Reynolds number. Hopefully, this attempt can stimulate later modelling efforts. 

Under nominal conditions and when present, the fluctuating lift is dominated by the 
actions from the periodic phenomenon called vortex shedding, the principal source of 
cross-stream flow-induced vibration and acoustic emissions (Blevins 1990). The fluctuating 
lift is due mainly to the fluctuating pressures acting on the surface of the cylinder (Drescher 
1956; Kwon & Choi 1996) and except for the rearmost part of the cylinder the pressure 
fluctuation energy is concentrated to a band around the mean shedding frequency 
fs (Sonneville 1976). The alternate periodic shedding causes the pressure fluctuations at 
around fs to be essentially out-of-phase between the upper and lower side of the cylinder 
(Gerrard 1961), i.e., the lift fluctuation energy is concentrated to a band around fs. The 
amplitudes of fluctuating drag, which are significantly smaller than the fluctuating lift 
(Bouak & Lemay 1998; Posdziech & Grundmann 2000), are dominated by fluctuating 
pressures which are in-phase between the upper and lower side of the cylinder, which in turn 
are concentrated to very low frequencies and to a band around two times fs (Sonneville 
1976). The Strouhal number, the nondimensional shedding frequency, is defined as 
St =fsd/U, where d is the cylinder diameter and U is the (assumed constant) oncoming 
free-stream velocity. The Reynolds number in the assumed incompressible flow is defined as 
Re = p U d/p, where p is the density and p. is the dynamic viscosity of the fluid. All fluid 
properties are assumed to be constant. 

The nominal case under consideration is flow around a nonvibrating cylinder with 
negligible effects of surface roughness, with a large enough aspect ratio f/d and with suitable 
end conditions (Williamson 1989) at vanishing or very small solid blockage ratios (wall 
confinement) and free stream turbulence, respectively. These additional factors have all been 
shown to have an influence on the flow in general and on the fluctuating lift in particular, 
see, e.g., Farell (1981) and Blevins (1990) and references cited therein. In this work, the 
Reynolds number range of principal interest is from Re ~ 47 to ~ 2 x 105, i.e., from the 
onset of vortex shedding up to the end of the subcritical regime where there is a rapid 
decrease in mean drag coefficient with increasing Re, the so-called drag crisis. For higher 
Re, see Farell (1981) and Ribeiro (1992). 

The r.m.s. (root-mean-square) lift coefficient is defined as 

21/ 
Cu-JlPdic> 

(1) 

where L' is the r.m.s. of lift fluctuations acting on a spanwise segment of length (c. The 
sectional r.m.s. lift coefficient is the r.m.s. lift coefficient for which the segment length is 
vanishingly small {{cjd -> 0). The sectional lift can thus be seen as lift per unit span. The total 
lift fluctuations are defined as those acting on the whole cylinder length exposed to flow 
(4 = f). The fluctuating lift on a finite cylinder segment is dependent on the degree of three 
dimensionality in the shedding flow close to the cylinder. One measure of this three 
dimensionality is the span-wise or axial correlation length scaled with the diameter, A/d 
(Blake 1986). The scarceness of data for this quantity is even larger than for the r.m.s. lift 
coefficient (Ribeiro 1992). A near-wake spanwise correlation study is presented in Norberg 
(2000), extending down to Re = 230 and using hot wire anemometry. Knowledge of 
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spanwise correlation also has a great significance for vortex-induced sound generation 
(jEolian tones) and for the important question of the necessary spanwise computational 
dimension to capture significant flow-dynamic features in three-dimensional (3-D) numer- 
ical simulations. 

In almost every fluid mechanics textbook there is a graph for the circular cylinder in 
cross-flow, showing the variation of mean drag coefficient CD versus Re. Since the extensive 
measurements of Wieselsberger (1921) and Roshko (1961), the general appearance of this 
graph is unaltered. Corresponding graphs for the r.m.s. lift coefficient, Cw versus Re, are 
much more indefinite, despite the various compilations that have been presented, e.g., see 
Morkovin (1964), Blevins (1990) and Ribeiro (1992). For a continuous flow situation the 
very first measurement of fluctuating lift was carried out by Drescher (1956). Since then, 
a vast amount of data has been gathered. However, when plotting out all r.m.s. lift 
coefficients as a function of Reynolds number the picture becomes increasingly scattered 
and inconclusive. It is also evident from such a plot that almost all measured C^-data is 
restricted to Re > 6 x 103. However, in 1992, the author presented experimental data on the 
sectional r.m.s. lift coefficient for Reynolds numbers between 720 and 2 x 105 (Norberg 
1993). Many further results, and extensive experimental details, are contained in a compre- 
hensive companion paper (Norberg 2000). 

The main objective of this work is to make an overview of the fluctuating lift acting on 
a circular cylinder, especially regarding the influence of Reynolds number and the relation 
between fluctuating lift and flow features in the near-wake region. 

2. SUMMARY OF RESULTS ON LIFT-RELATED QUANTITIES 

Compilation graphs on St, CL. and A/d versus Re are shown in Figures 1, 2 and 3. Solid 
lines refer to empirical functions as presented in Norberg (2000). As with all empirical 
functions they are open for re-evaluation when more data has been collected. 

The shaded region in Figure 1 corresponds to the bandwidth ( - 3 dB) of the shedding 
peak frequency (Norberg 1993). Smoke-wire flow visualizations (Norberg 1992,1993) reveal 
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Figure 1. Strouhal number versus Reynolds number. 
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Figure 2. R.m.s. lift coefficient versus Reynolds number. 

that the change-over to a low-quality shedding at Re ~ 5-1 x 103 is associated with 
a transitional change in the three dimensionality of near-wake vortex shedding, more 
specifically with an increasing degree of spanwise waviness of primary vortices and by the 
(somewhat later) inception of naturally occurring and random-positioned vortex disloca- 
tions, also see Prasad & Williamson (1997b). 

The experimental lift data in Figure 2 only contains sectional or near-sectional lift 
coefficients (/c/d < 1). A summary of previous laboratory measurements of both sectional 
and total lift fluctuations, for Re < 3 x 105, is found in Norberg (2000), where tables 
summarizing previous results on fluctuating lift from 2-D and 3-D numerical simulations 
are also provided. As evident from Figure 2 dramatic variations in Cv occur at turbulent 
shedding conditions. Corresponding variations in Strouhal number (Figure 1) are much 
more gentle. 

For turbulent shedding conditions (approximately Re > 260) and with increasing Re 
there is a general downward trend in A/d versus Re, see Figure 3. However, a local 
maximum occurs at Re ~ 5 x 103, previously noted by Norberg (1987), which coincides with 
the Reynolds number with inception of low-spectral-quality shedding (Figure 1). 

3. FLUCTUATING LIFT AND SPANWISE CORRELATION 

Assuming spanwise flow homogeneity, the ratio, yL, between r.m.s. lift on a finite length 
4 and sectional r.m.s. lift times ic is (Kacker et al. 197'4) 

TL 
1 

(4 -s)RLL(s)ds 
1/2 

(2) 

where RLL{s) is the correlation coefficient, at zero time delay, between sectional lift forces 
separated a spanwise distance s. Since lift is dominated by actions of surface wall pressures, 
an accurate approximation for RLL is the lift correlation based on sectional pressure forces! 
As discussed in Ribeiro (1992), also see Sonneville (1976) and Moeller (1982), the correlation 
coefficient, Rpp(s), between fluctuating wall pressures along the generator at q> = 90°(the 
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Figure 3. Spanwise correlation length versus Re. 

mean stagnation line at cp = 0°) or between fluctuating velocities along a generator close to 
the separated shear layers but not too far from the cylinder, Ruu(s), can also provide 
a reasonable estimate for RLL, i.e., RLL(s) « Rpp(s) x Ruu{s). With a known or estimated 
correlation function RLL, equation (2) can be used to convert the finite section r.m.s. lift 
coefficient to the sectional r.m.s. lift coefficient. "Present" results in Figure 3 were obtained 
using RLL x Ruu, see Norberg (2000). 

The one-sided spanwise correlation length A and the centroid of spanwise correlation a, 
related to the fluctuating lift, are defined as (Blake 1986) 

A RLL(s)ds,   a = A~ sRLL(s)ds. (3,4) 

At large separations and for turbulent shedding conditions RLL is expected to vanish, 
RLL{s -> oo) = 0. In reality, the upper limits in equations (3) and (4) have to be finite and for 
convenience, neglecting effects of end disturbances, they can be set to the full length of the 
cylinder. A neglect of end disturbances implies a sufficiently large aspect ratio, and under 
such circumstances and when the segment length £c equals the full length £ in equation (2) 
the lift ratio becomes (Keefe 1961) 

U = rx^/2A(( -c\ (5) 

This is the ratio between the total r.m.s. lift coefficient and its sectional counterpart (Keefe 
1961). Naturally, yL equals unity in fully correlated flow (A = £,a = t/2). For turbulent 
shedding conditions the centroid appears to be of the same magnitude as the correlation 
length (Leehey & Hanson 1971; Norberg 2000). The exponential drop, RLL = exp( - s/A), 
which seems to work well as a model function for Re > 8 x 103 (Norberg 2000), gives a = A. 
For a sufficiently long cylinder and for partially correlated conditions the lift ratio becomes 
proportional to J~ÄJi. Eventually, with increasing aspect ratio tjd, the r.m.s. lift coefficient 
based on the fluctuating lift acting on the full length of the cylinder goes to zero, the total 

r.m.s. lift being proportional to JTfd. 
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4. FINAL REMARKS—FACTS AND SPECULATION 

4.1. LAMINAR SHEDDING 

Onset of vortex shedding occurs at Re = Rec ~ 47 (Provansal et al. 1987; Norberg, 1994). 
Obviously, Rec is also the onset of fluctuating lift. The onset can be characterized 
as a supercritical Hopf bifurcation which as well as the resulting stable two- 
dimensional periodic shedding close to onset can be described by the Stuart-Landau 
equation (Provansal et al. 1987). A supercritical parameter may be defined: 

Re - Rec £ = Te7- (6) 

As suggested from the Stuart-Landau equation, at least close to the onset, the limit-cycle 
amplitude of periodic velocity fluctuations in the flow is proportional to £1/2 (Schumm et al. 
1994). Although not fully established as a theoretical fact, it seems that the sectional lift 
amplitude is linearly related to velocity fluctuations close to the cylinder. For laminar 
shedding the lift fluctuations are virtually indistinguishable from a sinusoidal variation 
(Kwon & Choi 1996). Consequently and to leading order, a square-root dependency for the 
r.m.s. lift coefficient versus Re is expected, CL, oc e1/2. Results from 2-D simulations within 
the laminar shedding regime, e.g. Posdziech & Grundmann (2000), support this initial 
square-root dependency. For higher Reynolds numbers a gradual change to a linear 
variation is indicated. Based on published 2-D simulation data for Re < 200, see Norberg 
(2000), the following approximate formula is suggested (Rec = 47): 

CL. = Ve/30 + £790. (7) 

In summary, the r.m.s. lift coefficient increases rapidly within the laminar shedding regime. 
At the highest attainable Reynolds number for two-dimensional flow, Re ~ 190, the r.m.s. 
lift coefficient is Cv = 0-45 (Posdziech & Grundmann 2000). 

4.2. WAKE TRANSITION 

Following Williamson (1996a), the natural wake transition follows the sequence 
(2-D -j- A* -> B). Mode A* is a highly disturbed flow state comprising a mix between mode 
A instability structures and large-scale dislocations (Williamson 1992). For obvious reasons 
the change from 2-D to A* involves a dramatic decrease in the spanwise correlation of 
velocity fluctuations in the wake. It also involves a significant drop in shedding frequency 
and its associated spectral quality (Norberg 1987; Williamson 1988, 1996b). The sectional 
r.m.s. lift coefficient is expected to decrease in this process (Zhang et al. 1995). Measure- 
ments in Norberg (2000) indicate for Re = 230 a spanwise correlation length of about 
7 diameters, which is about twice the wavelength of the most unstable mode A instability 
(Barkley & Henderson 1996). As shown in Norberg (1994) a relatively weak influence of the 
necessary aspect ratio to obtain independent global results is indicated for the range 
Re ~ 165-230. This suggests a rather low spanwise correlation for this initial, A*-domin- 
ated part of the wake transition regime, also see Roshko (1954). Within flow state A* and 
with increasing Re both Strouhal number (Williamson 1996a) and r.m.s. lift coefficient 
(Zhang et al. 1995) increases. 

Mode B instability involves the generation of rib-like streamwise vortices with a spanwise 
wavelength slightly less than one diameter. With the inception of mode B (Re x 230), mode 
A being in a declining phase, there is a stabilization on the near-wake vortex shedding 
(Williamson 1996b). With a subsequent increase in Re, mode B gradually becomes the 
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dominant 3-D wake feature (Williamson 1996b), and during this process the spanwise 
correlation is expected to increase. As shown in Williamson (1996b), the shedding flow at 
Re =* 260 exhibits a remarkable high spanwise coherence. Experiments in Norberg (2000) 
indicate a spanwise correlation length of about 9-5 diameters at Re = 240 rising to 
a maximum of about 30 diameters at Re = 260-300. The high A/d is in conformity with the 
very large aspect ratios which are needed for independent results at around these Reynolds 
numbers (Norberg 1994). 

After the inception of mode B and with an increase in Re, the r.m.s. lift coefficient 
continues to increase (Zhang et al. 1995). However, based on the simulations by Zhang et al. 
there seems to be a local maximum reached for Cv at around the same point where there is 
a peak in base suction (Williamson & Roshko 1990; Norberg 1994), which also coincides 
with the re-introduction of an extremely high spectral quality of the shedding frequency, at 
Re ~ 260 (Norberg 1987). 

4.3. TURBULENT SHEDDING 

Based on previous measurements, e.g. Roshko (1954), Bloor (1964), Gerrard (1978), Norberg 
(1987), Unal & Rockwell (1988) and Williamson (1996b), the transition to turbulence in the 
wake reaches the vortex formation region somewhere within Re ^ 260-300. Turbulent 
shedding conditions prevail for all higher Re. In vortex shedding flows, the actual point or 
streamwise position of wake transition is meaningful only in the time-averaged sense, given 
that there is a workable definition of "transition to turbulence". However, at these rather 
low Reynolds numbers, such a definition has not yet been given and consequently there are 
no precise quantitative results reported. A complication is that the wake transition at these 
Re appears linked to multiple and strongly interacting wake instabilities (Morkovin 1964; 
Williamson 1996b). At higher Re the transition appears to be more distinct and rapid, with 
a stronger linkage to specific subfields, e.g. see Bloor (1964). 

As from the onset of turbulent shedding and with increasing Re there seems to be an 
increasing disorder in the fine-scale three dimensionalities associated with the secondary 
and essentially streamwise-oriented vortices of type mode B (Williamson 1996a). As shown 
in Brede et al. (1996) the normalized circulation of the secondary mode B vortices (scaling 
with Ud) increases by as much as 50% in between Re ^ 300 and 500 (which is their highest 
attainable Re). This increase in secondary (essentially streamwise) circulation occurs prob- 
ably at the expense of the primary (essentially spanwise) circulation associated with the 
roll-up of the von Kärmän vortices (Mansy et al. 1994). Consequently, since the alternate 
roll-up is closely related to fluctuating lift, CL. drops with increasing Re. 

The indicated spanwise correlation length at Re = 1-6 x 103 is approximately 8 cylinder 
diameters while the corresponding local minimum of the sectional r.m.s. lift coefficient is 
only CL. ca. 0-045 (Norberg 2000). It is to be noted that from about Re = 270-1400 the total 
r.m.s. lift force on a large-aspect-ratio cylinder, proportional to CL- x Re2 x yJA/d [equa- 
tions (1) and (5)], is indicated to be approximately constant. It seems appropriate to classify 
this remarkable behaviour (and the subsequent very low r.m.s. lift coefficient at 
Re ~ 1-6 x 103) as a lift crisis. The suggested variations for Cv and A/d (Norberg 2000) 
indicate that the corresponding increase in free-stream velocity with a factor of about 
5 (1400/270 = 5-2) will only cause a ± 15% variation in the total r.m.s. lift acting on the 
cylinder! As a perspective, the total mean drag increases by about a factor 600 (CD « 1). 

Within the initial part of the turbulent shedding regime, up to about Re = 5 x 103, the 
streamwise position of wake transition appears to be rather fixed with respect to the 
cylinder, although being upstream of the mean position of wake closure (Bloor 1964). It 
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seems, at these Re, that the transition to turbulence in the wake is not due to a shear-layer 
instability; if so, the position ought to be moving towards the cylinder with increasing 
Reynolds number. Instead, it is suggested that the wake transition has its origin in the 
near-wake development of the rib-like secondary vortices of mode B type. As such, a rib-like 
vortex structure is swept across the wake centre line, being on the upstream side of its 
associated von Kärmän vortex within the connecting braid shear layer inside the formation 
region (Bays-Muchmore & Ahmed 1993; Brede et al. 1996; Lin et al. 1996), there will be 
a rapid stretching of the structure itself which, in connection with possible interactions with 
the primary roll-up, leads to a rapid breakdown into small-scale turbulence. However, it 
seems that the mode B vortices also have some sort of a timing or regulating role for the 
vortex shedding process. As from about Re = 260-5-1 x 103, the spectral quality of the 
shedding frequency is extremely high (Norberg 1987). The stabilization of the shedding 
frequency for the circular cylinder may be related to a feedback mechanism in between the 
rib-like vortices, the developing von Kärmän vortices and ultimately with the separation 
process, causing small but regulating undulations of the separation line. 

The subsequent increase in CL. from about Re = 1-6 x 103 seems to coincide with the 
point where shear-layer vortices show up as important ingredients in the near wake (Prasad 
& Williamson 1997a). The shear-layer vortices will introduce additional shear stresses to 
the near wake and to balance this (Roshko 1993) the formation region shrinks and the base 
suction increases (Linke 1931; Bloor 1964; Norberg 1994,1998). Consequently, the sectional 
Cv increases, at first rather slow but then at an increasing rate, especially within 
Re = 5 x 103 to 7 x 103 (Figure 2). A local maximum in A/d occurs at Re = 51 x 103, 
A/d « 15. At this point, a change-over in the wake transitional process is suggested; below 
Re ~ 5 x 103, the (mean position of) transition to turbulence occurs at some near-constant 
distance upstream of the (mean) wake closure, the transition being triggered by actions of 
secondary vortices of type mode B; for higher Re the transition instead is primarily 
governed by a Kelvin-Helmholtz instability mechanism within the separated shear layers, 
at a (mean) position which thereafter is moving upstream with increasing Re. At the critical 
Re the two (mean) streamwise positions coincide causing a resonance-like behaviour, 
presumably in-between spanwise length scales of mode B vortices and shear-layer vortices 
(Norberg 1998). For Re > 5 x 103, due to the change-over in the position of wake transition, 
the harmony between the mode B vortices and the roll-up of von Kärmän vortices is lost, 
and this causes more and more disruptions to the vortex shedding process, e.g. a significant 
spanwise undulation of developing von Kärmän vortices, a characteristic lift amplitude 
modulation and a spectral broadening of the shedding peak frequency. Occasionally, these 
disruptions lead to random-positioned vortex dislocations, along the span and within the 
vortex formation region. During such events the local sectional lift amplitude is very low. 

The change-over from the "high-quality" shedding mode displaying a fairly regular 
vortex shedding with only minor spanwise undulation of the developing von Kärmän 
vortices to the "low-quality" shedding mode displaying significant spanwise undulations 
and occasional but characteristic vortex dislocations appears to be fully completed at 
Re ~ 8 x 103 (Norberg 1993,1998). At Re ~ 104 the transition in the separated shear layers 
has reached a mean position corresponding to just above the base point of the cylinder 
(Linke 1931; Bloor 1964; Norberg 1998). As from about this Re the variations of CL. and 
A/d with increasing Re slow down (Figures 2 and 3), the probable reason being the 
diminishing relative importance of the actual position of wake transition on the global flow 
development. At Re ~ 1-6 x 105, due to the closeness of transition in the separated shear 
layers, the first signs of a reattachment behaviour becomes visible in the measured r.m.s. 
pressure distributions, at q> ~ 105° (Norberg 1993). With a subsequent increase in Re, the 
build-up to a fully reattached flow continues, the position of laminar separation moves 
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downstream, the wake narrows and the Strouhal number increases, and finally at 
Re ^ 2-3 x 105 there is a rapid fall in both CD and CL- when entering the critical regime. 

DEDICATION 

This paper is submitted in honour of the outstanding achievements, insightful publications 
and contributions in this field over the last 50 years made by Professor Anatol Roshko 
(California Institute of Technology, Pasadena, U.S.A.). At the last day of the IUTAM 
Symposium related to these proceedings (16 June 2000), Professor Roshko mentioned that 
the first time he "dipped" the hot wire into the shedding wake was in August 1950. The 
publication "On the development of turbulent wakes from vortex streets" was published 
4 years later (Roshko 1954). Among other things this classic work contains the Roshko 
relation for the St-Re variation within the laminar shedding regime, as Roshko refers to as 
the stable range. This relation, which has resisted the ravages of time, was not verified until 
1987 when the author presented his thesis work (Norberg 1987). 
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The selection criteria governing finite-amplitude synchronized oscillating states are discussed 
for model systems and real wake flows in a domain of infinite streamwise extent. Two types of 
nonlinear global modes are possible: hat modes with overall smoothly varying amplitude and 
elephant modes with a sharp front. The vortex street in wake flows is of elephant type, as 
observed in direct numerical simulations of a real spatially developing wake. Furthermore, the 
elephant frequency selection criterion is in excellent agreement with the numerically determined 
vortex shedding frequency. © 2001 Academic Press 

1. INTRODUCTION 

A VARIETY OF OPEN FLOWS may sustain globally synchronized oscillations. Wakes behind 
bluff-bodies are well known [for a review see Williamson (1996)] to undergo a transition to 
a periodic vortex shedding regime at moderate Reynolds numbers. Experimentally and 
numerically, the features of a globally synchronized vortex street are now well documented 
[e.g., Provansal et al. (1987), Hammond & Redekopp (1997)]. However, the selected 
frequency of the global structure has not been theoretically predicted in the framework of 
hydrodynamic stability theory. The aim of the present paper is to discuss recent progress 
made in the identification of resonance mechanisms which are responsible for global 
synchronization in spatially developing flows. We restrict here our attention to one- 
dimensional complex Ginzburg-Landau (CGL) equations with spatially varying coeffi- 
cients in an infinite domain and to two-dimensional spatially developing wake flows 
governed by the Navier-Stokes (NS) equations. The paper is mainly based on the recent 
dissertation of Pier (1999) and the corresponding publications by Pier & Huerre (1996), 
Pier et al. (1998), Pier et al. (2001) and Pier & Huerre (2001). For a general background on 
the hydrodynamic stability theory of spatially developing flows, the reader is referred to the 
review articles and tutorial presentations of Huerre & Monkewitz (1990), Huerre & Rossi 
(1998) and Huerre (2000). A brief summary of relevant issues is given below. 

The existence of self-sustained oscillations in shear flows is closely related to the 
transition from convective to absolute instability (Briggs 1964; Bers 1983). In convectively 
unstable (CU) systems, the basic flow carries growing perturbations away in the down- 
stream direction, and the system eventually returns to its unperturbed state. Hence, if a flow 
changes from local stability to convective instability, only its transient response to perturba- 
tions is affected. In a locally stable configuration all perturbations are damped, whereas in 
a CU basic flow they grow in the downstream direction. In the latter configuration, 
perturbations eventually leave the domain of interest: in the long term, the flow is globally 
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stable and it may only be kept out of equilibrium if perturbations are continuously entering 
the inflow boundary. Thus, CU flows may be interpreted as amplifiers since perturbations 
entering the inlet grow along the stream until they leave the system at the outlet. 

In contrast, transition from convective to absolute instability drastically changes the 
dynamical behaviour. In absolutely unstable (AU) systems, instabilities grow in situ and 
survive for all times. A self-sustained nontrivial state may therefore be observed without 
external input. Thus, as far as the long term asymptotic behaviour is concerned, transition 
from local stability to convective instability proves irrelevant, whereas transition from 
convective to absolute instability plays a crucial role. 

The above-mentioned instability properties are defined for infinite and spatially 
homogenous systems. Since real flows develop in the streamwise direction, stable, CU and 
AU domains may coexist as the local properties vary along the stream. Under the 
assumption that the streamwise variations be small on a typical instability length scale, the 
previous definitions still apply locally at each streamwise station. In wake flows at 
moderate Reynolds numbers, which are of particular interest to readers of this Special 
Issue, the transient regime leads to a stationary time-periodic state; the flow globally 
behaves as an oscillator. Characteristics such as spatial structure and global frequency 
become intrinsic to the flow: They are selected in the bulk and largely independent of inflow 
conditions. 

The following questions then arise, (i) Under which conditions does global instability 
occur? Does global instability coincide with the onset of local absolute instability or is an 
AU domain of finite extent required? (ii) In the case of globally synchronized oscillations, 
how is the global frequency determined? Which part of the flow acts as a wave maker? 
(iii) How is the global behaviour affected by nonlinearities? Are finite-amplitude oscilla- 
tions governed by linear or nonlinear selection criteria? What is the importance of the mean 
flow correction generated by nonlinear interactions? 

In the following, these issues are preferentially addressed in the context of streamwise 
developing flows in an infinite domain, whether in the form of CGL model equations or real 
wakes. In the latter instance, we solely consider wakes produced by a velocity deficit 
introduced at some streamwise station and boldly set aside the wake producing body. This 
assumption is in marked contrast with the recent investigations by Couairon & Chomaz 
(1997, 1999a, b) of nonlinear global modes governed by one-dimensional CGL model 
equations in semi-infinite domains. In this case, global mode onset takes place whenever 
a front succeeds in propagating upstream against the advecting flow, thereby getting pinned 
at the upstream boundary point. This precisely takes place when transition from convective 
to absolute instability occurs at the upstream boundary. Furthermore, Couairon & 
Chomaz (1999b) have derived scaling laws for the global mode characteristic length scale 
and its streamwise shape near onset which are in excellent agreement with experimental and 
numerical studies of vortex shedding behind bluff bodies by Goujon-Durand et al. (1994) 
and Zielinska & Wesfreid (1995). Such a scenario is also supported by the direct numerical 
simulations of the nonlinear impulse response in parallel wakes conducted by Delbende & 
Chomaz (1998): although the impulse response is of finite amplitude, its upstream edge is 
governed by linear dynamics. 

2. SCALE SEPARATION 

The theoretical formulation underlying all global mode analyses, whether linear or non- 
linear, essentially relies on the assumption of slow streamwise variations of instability 
properties. This hypothesis is required if one is to establish a specific relationship between 
global behaviour and local properties. 
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At an intuitive level of understanding, in open systems the mean flow introduces 
a preferred streamwise direction along which the entire dynamics develops. Let x denote the 
streamwise distance, increasing from the inlet to the outlet. The coordinate x appears both 
as a variable in streamwise derivative operators related to the instability properties and as 
a parameter to account for the streamwise evolution of the basic flow. If X denotes a typical 
instability length scale and L the streamwise evolution length scale of the basic flow, weak 
inhomogeneity is characterized by the small parameter 

e = y«l. (1) 

Under assumption (1), the parametric streamwise dependence of the dynamics only occurs 
through the slow coordinate X = EX. At leading order, the slow parameter X may be 
considered independent of the fast variable x. Local instability characteristics are then 
retrieved by freezing X in the governing equations and studying the equivalent homogenous 
system in the infinite domain - oo < x < + oo. Hence the fast evolving local dynamics is 
slaved to the slow evolution of the basic flow. This technique is fully justified by resorting to 
the method of multiple scales (Crighton & Gaster 1976; Bender & Orszag 1978). 

3. MODEL FLOWS AND REAL FLOWS 

The global behaviour of spatially developing flows has typically been studied in the context 
of the one-dimensional CGL model or the complete two-dimensional Navier-Stokes (NS) 
equations. 

The spatially inhomogenous Ginzburg-Landau evolution equation for a complex field 
\j/(x, t) may conveniently be written as 

i ^ = L0(X) + 1 cokk(X)k0(X)2\ * + icokk(X)k0(X) ^ 

-\cokk(X)^ + y(XM\2^, (2) 

where a>0 and k0 denote the absolute frequency and wavenumber, respectively, ookk the 
second derivative of the frequency with respect to wavenumber. The choice yt = Imy < 0 
ensures that nonlinearities are stabilizing everywhere. All complex coefficients of equation 
(2) depend on X = ex to enforce assumption (1) of weak spatial inhomogeneity. 

For two-dimensional incompressible flows, the total streamfunction f(x, y, t) is governed 
by the nondimensional vorticity equation 

3     dW d      dW d\ ..„      1   .2 — + — — -- Af = — A2f, (3) 
dt     8y 8x     dx dyj Re 

where y denotes the cross-stream coordinate and Re the Reynolds number. Real flows fulfill 
the assumption of slow streamwise development in high Reynolds number situations, and 
the inhomogeneity parameter then reads 
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When £«1, the leading-order time-independent basic flow resulting from (3) obeys the 
Prandte boundary-layer equation 

dW  d      d'F d\ dW _     dP     d3W 

fyfö~föfy)Jy~~~dX + ~dy~ -^ + XX> (5) 

where the streamwise pressure gradient dP/dX arises as an integration constant. Basic 
streamwise and cross-stream velocity components are then obtained as U(y;X) = dW/dy 
and V(y;X) = - edW/dX, respectively. Decomposition of the total streamfunction into 
basic field and finite-amplitude perturbations according to T(x,y,t) = j"£ U(tj;X)dr] + 
\j/{x,y,t) yields the governing vorticity equation for \ji{x,y,t) as 

(d   ,TTI   ^
8
\M     

82JJ
 t   ™#     /# 8      # ^\ 1     , 

U + mX) TX)
A*-Wiy;X)i + {iryTX-£e-y)A* = Re 

A V-        (6) 
Although real flows are two dimensional, there is only one slow streamwise coordinate 

X that accounts for the evolution of local instability properties as described by a local 
dispersion relation. The study of two-dimensional flows is more complex since cross-stream 
eigenfunctions have to be computed; however, the analysis of CGL or NS global modes 
proceeds in exactly the same manner since all the fast evolving features are slaved to X. 

Note that in the CGL model (2) any variations of the complex coefficients with X may be 
considered. In the hydrodynamic context (6) however, the basic flow U(y; X) governed by (5) 
is uniquely determined by the inlet velocity profile, say U(y; X = 0), and the streamwise 
pressure distribution P(X) for X > 0. In a self-consistent formulation, the velocity profiles 
U(y;X) appearing as coefficients in (6) cannot be arbitrarily specified. In the present 
analysis, a coflowing wake profile is chosen for U(y; X = 0) and the pressure field P(X) is 
then carefully tailored so that the essential features of experimental wake flows are 
reproduced. In this procedure, a "synthetic wake" is thereby generated without requiring 
the presence of a solid obstacle [cf. Figure 2(a)]! 

4. LINEAR RESONANCE CRITERION 

In a stricly linear framework, theoretically consistent results have first been derived by 
Chomaz et al. (1991) for the linear version of model (2) and by Monkewitz et al. (1993) for 
the linear version of the vorticity equation (6). The essential physical property is the 
complex local absolute frequency co0(X) defined in classical fashion (Briggs 1964; Bers 1983) 
by imposing a zero group velocity condition on the local linear dispersion relation 

co = Q'{k,X). (7) 

The form of the CGL model (2) already displays its dependence on co0(X), whereas for real 
flows the dispersion relation (7) is derived by solving the Orr-Sommerfeld equation applied 
to the velocity profiles U(y; X) prevailing at each station X. 

The criterion for linear global instability is then based on the variations of co0(X) and 
states that the complex frequency a's of a self-sustained linear global mode is given by the 
saddle-point condition 

-^(*i) = 0   and   a>l = co0(Xl), (8) 
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where it is understood that co0(X) has been analytically continued in the complex X-plane. 
In general, the saddle point X[ does not occur on the real axis, and linear global instability 
characterized by Im co's > 0 requires an AU region of finite extent in the slow variable X. 
Thus, in the linear framework, absolute instability is a prerequisite for global instability. 
However, it is not a sufficient condition: Linear global modes are observed to decay in time 
for AU domains of finite but small extent in X, which may correspond to very large AU 
domains in terms of x. 

The typical shape of a linear CGL global mode is sketched in Figure 1(a). Note that, in 
general, maximum amplitude occurs downstream of Re X's. 

5. NONLINEAR RESONANCE CRITERIA 

A weakly nonlinear approach (Le Dizes et al. 1993) conducted close to the onset of global 
instability specified by Im co's = 0 has proven that the bifurcation analysis is ill-behaved and 
suggested that only a fully nonlinear theory is appropriate. In the nonlinear framework, two 
types of finite-amplitude oscillating states have been identified for the inhomogenous CGL 
equation in infinite media: soft or hat (Pier & Huerre 1996) and steep or elephant (Pier et al. 
1998) nonlinear global modes [cf. Figure l(b,c)]. Their selection criteria are obtained from 
the local linear and nonlinear dispersion relations, as summarized below. 

The local nonlinear dispersion relation is defined via a temporal evolution problem in the 
following way. Consider a homogenous medium obtained by freezing X at a prescribed 
value. An unstable spatially periodic perturbation of real wavenumber k grows according to 
Q\{k,X)>0 until its amplitude reaches a finite level. Due to stabilizing nonlinearities, 
a fully nonlinear wavetrain is generated with spatial periodicity imposed by the initial 
wavenumber. Its frequency, measured for each k, then yields the nonlinear dispersion 
relation 

w = Qn'(k,X). (9) 

Whereas the local linear dispersion relation (7) yields a complex frequency for any complex 
wavenumber, the nonlinear dispersion relation (9) is defined only for real wavenumbers 
k associated with a positive growth rate Q\(k, X)>0 and it necessarily yields real frequen- 
cies. For the CGL model (2), nonlinear wave-trains are finite-amplitude harmonic waves of 
the form Rem~at) and (9) reads to = lm{y*(X)Ql(k,X))ßmy*(X). Computation of (9) for 
real flows, however, requires a numerical integration as discussed by Pier & Huerre (2000). 

Hat global modes [Figure 1(b); Pier & Huerre 1996] have an overall smoothly varying 
amplitude, and their real frequency «"' is selected at a saddle-point X"1 of the nonlinear 
dispersion relation according to 

|(M4M = 0   and   ^' = Q"l(k"J,X"J). (10) 
oX ok 

Elephant global modes [Figure 1(c); Pier et al. 1998] are characterized by a sharp front 
governed by the Dee & Langer (1983) marginal stability criterion and located at the 
upstream transition station Xca between CU and AU regions. The entire structure is tuned 
to the front frequency given by the corresponding real absolute frequency 

coc
0
a = co0(Xca)   with   lmco0(X

ca) = 0. (11) 
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Figure 1. Shapes of CGL global modes. Shaded regions indicate extent of AU domain, (a) Linear global mode, 
(b) Nonlinear soft global mode or hat mode, (c) Nonlinear steep global mode or elephant mode. The names "hat" 

and "elephant" have been chosen in reference to Saint-Exupery (1946). 

The detailed analysis of the transition scenarii between the unperturbed state and either 
type of nonlinear global mode reveals (Pier 1999, Pier et al. 2001) that the two nonlinear 
resonance criteria (10,11) are mutually exclusive and that the appropriate global bifurcation 
parameter is the maximum absolute growth rate over the entire medium co™jx = 
max wQ4{X). Nonlinear global modes exist whenever an AU region is present (a>o,f > 0). At 
transition (co™ ** = 0) an elephant mode is always selected. Hat modes exist further above 
threshold and are more readily obtained in systems where the basic advection velocity is 
weak. Absolute instability is therefore a necessary and sufficient condition for the existence 
of self-sustained nonlinear structures. This is in contrast with the results of Section 4: Local 
absolute instability is only a necessary condition for the existence of amplified linear global 
modes. 

6. FINITE-AMPLITUDE VORTEX STREET AS AN ELEPHANT MODE 

The generalization of the above nonlinear theory to real flows governed by the 
Navier-Stokes equations has been conducted by Pier (1999) and Pier & Huerre 
(2001). 

In order to obtain unambiguous results that can be compared with the theory, the basic 
flow has to strictly comply with the condition of weak streamwise nonuniformity. Bluff 
body wakes display a recirculation bubble near the obstacle which violates this assumption. 
The "synthetic wakes" governed by the Prandtl boundary-layer equation (5) all avoid this 
difficulty. In the example represented in Figure 2(a) for Re = 100, the pressure gradient has 
been selected to be mildly adverse in order to produce a central AU region (displayed in 
gray), which is an essential feature of real wakes. 

Direct numerical simulations of the temporal evolution of this basic flow [see Pier & 
Huerre (2001) for details] leads to a finite-amplitude vortex shedding regime [Figure 2(b)] 
tuned at a well-defined global frequency (og = 0T86 + 0-002. This vortex street is made 
up of wave-trains which slowly deform while travelling downstream: such structures 
are locally periodic and their (x, ^-dependence solely occurs via a phase function with only 
slow streamwise variations. Hence the multiple-scale formalism (Bender & Orszag 1978) 
applies and the global structure may be analysed in terms of local linear and nonlinear 
waves. 

In the upstream domain (x < 25), the basic flow is seen to remain unperturbed: small- 
amplitude wave-trains prevail in this linear region. Further downstream, nonlinear travel- 
ling waves develop and completely mask the underlying basic wake flow. In order to 
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establish that the nonlinear globally synchronized state [Figure 2(b)] follows the elephant 
resonance criterion (11), its numerically determined features are now compared with 
predictions based on the local linear and nonlinear instability analyses of the basic flow 
[Figure 2(a)]. 

The computation of the local linear dispersion relation (7) via the Orr-Sommerfeld 
equation reveals an AU domain extending over the stream wise interval 24 < x < 55 (gray 
regions in Figure 2). The real absolute frequency prevailing at its upstream boundary 
xca = 24 rea(js m™ = 0-190. The nonlinear resonance criterion (11) therefore accurately 
predicts the vortex shedding frequency, unlike the linear criterion (8) which yields 

(o[ = 0-143 + 0-008L 
The local nonlinear dispersion relation (9) is illustrated in Figure 2(c) by isofrequency 

contours in the linearly unstable domain of the (X, fc)-plane. These contours precisely define 
the nonlinear spatial branches k"'{X, co) obtained by solving the nonlinear dispersion 
relation (9) at a given frequency. A global mode synchronized at the frequency aft is 
expected to follow the spatial branch knl(X, coc

0
a) represented by a thick dashed curve. The 

local wave number of the numerically computed spatially developing vortex street 
[Figure 2(b)] is represented by a thick solid curve in the same sketch and it is seen to closely 
follow the path predicted by the elephant global mode structure. 

The finite-amplitude vortex street is thus described by a nonlinear elephant global mode. This 
theory not only accurately predicts the vortex shedding frequency but also the spatial structure 
of the downstream developing vortex street. 

The mean-flow correction, which is absent in CGL models, is specific to real shear flows. 
Indeed, nonlinear quadratic interactions in the NS equations generate a time-independent 
mean-flow component as well as higher harmonics. In the fully developed vortex shedding 
regime, the total mean flow then results from the superposition of the basic flow 
[Figure 2(a)] and the mean-flow correction [Figure 2(d)]. According to Figure 2(d), the 
mean-flow correction tends to fill up the velocity deficit in the wake. It is instructive to 
compare the results of direct numerical simulations with those emerging from a temporal 
evolution problem pertaining to a parallel wake frozen at a prescribed X station and 
perturbed with a spatially periodic wave of wavenumber kn'(X, coc<?). Via this procedure, 
a finite-amplitude wave-train is obtained for large time, the frequency of which is precisely 
COQ. Local mean-flow corrections are thereby computed for each station X, which may be 
pieced together to generate a spatially evolving mean correction field as displayed in 
Figure 2(e). The agreement between direct numerical simulation [Figure 2(d)] and local 
predictions [Figure 2(e)] is less satisfactory than for the unsteady part of the flow field 
[Figure 2(c)]. Whereas in the limit of vanishing inhomogeneity, the local analysis predicts 
a mean-flow correction of almost constant cross-stream width, the width of the mean flow 
in the direct numerical simulation is seen to increase with downstream distance. The 
mean-flow correction field is generated in the central shear region by nonlinear interactions 
and slowly diffuses on a viscous scale into the outer cross-stream direction. This diffusion 
process takes place in time [Figure 2(e)] or along the stream [Figure 2(d)], and there is no 
obvious relationship between these two situations. 

7. CONCLUSIONS 

We are now in a position to answer the questions listed in the introductory section. 

1. In a strictly linear approximation global instability in general requires an AU region of 
finite extent, whereas nonlinear global instability takes place as soon as local absolute 
instability arises at some point in the flow. When nonlinearities are present, the linear 
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resonance criterion (8) becomes irrelevant. It is the existence of a transition point from 
convective to absolute instability which is crucial in the establishment of a self-sustained 
nonlinear state. 
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Note that the real cylinder wake becomes absolutely unstable at Re ~ 25, whereas onset 
of vortex shedding occurs only for Re ~ 46. This discrepancy is presumably due to 
a violation of the assumption of slow spatial development in the neighborhood of the 
obstacle. 

2. The complex frequency of a linear global mode [Figure 1(a)] is obtained at a saddle 
point X[ of <o0{X) analytically continued in the complex X-plane see (8). Due to this 
continuation procedure, no frequency generating location may be identified in physical 
space; note however, that the region of maximum absolute growth rate plays an essential 
part. In contrast, the global frequency of nonlinear global modes [Figure l(b,c)] is selected 
at a specific location: either the saddle point X"' of the nonlinear dispersion relation (10) or 
the upstream boundary Xca of the AU region (11). These nonlinear resonance criteria are 
purely local in the sense that only the properties of the system at these stations are involved. 
In the case of wake flows, the vortex street is triggered by a front structure at Xca which acts 
as a source and imposes its frequency to the entire flow. 

3. The selection mechanisms pertaining to hat and elephant nonlinear global modes are 
markedly distinct. The hat frequency selection criterion (10) involves a saddle point of the 
nonlinear dispersion relation (9) in the bulk of the finite-amplitude region [Figure 1(b)]. 
Elephant modes [Figure 1(c)] are selected by a front located at the upstream boundary of 
the AU domain; finite amplitude wave-trains develop downstream of this location. Since the 
elephant frequency selection criterion (11) only involves the linear dispersion relation, this 
variety of nonlinear global mode is surprisingly governed by a local linear criterion. 

Finite-amplitude vortex shedding in wakes generates a mean-flow correction comparable 
in magnitude to the basic flow. Nonlinearities thus completely modify the underlying basic 
flow which becomes unobservable unless one artificially kills the perturbations by imposing 
for example a symmetry condition. 

The comparison between the results of direct numerical simulations and locally com- 
puted nonlinear wave-trains has demonstrated the validity of a linear and nonlinear 
analyses based on a scale separation assumption. The theory has led to the identification of 
two varieties of global modes: elephants and hats. The vortex street has been shown to be of 
elephant type with a front located at the convective-absolute instability transition point 
imposing its frequency to the entire flow. There remains to determine a real flow that 
sustains a global mode of hat type. Rayleigh-Benard convection in the presence of 
a horizontally varying temperature difference or Taylor-Couette flow between rotating 
coaxial cylinders with a varying gap may be good candidates for such a situation since there 
is no basic advection. 
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Results are presented from low Reynolds number experimental investigations of vortex-induced 
vibration and comparison is made with results from corresponding two- and three-dimensional 
direct numerical simulations. It is shown that three-dimensional simulations are required to 
reproduce the response envelope observed experimentally. Phase-averaged contours of span- 
wise vorticity demonstrate the presence of the 2P shedding mode on the lower response branch 
in both the experimental and three-dimensional simulation results. 
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1. INTRODUCTION 

A NUMBER OF FUNDAMENTAL STUDIES of the vortex-induced vibration of slender cylindrical 
structures in cross flow have been published over the last decade. Recent experiments [e.g., 
Khalak & Williamson (1999)] have extended the early works, such as that of Feng (1968), 
while numerical simulations have also started to make inroads at the lower end of the 
Reynolds number spectrum. Despite the quantity of experimental and numerical activity, 
there has been no published study in which it has been attempted to match parameters 
between the two domains. In this work, our aim is to increase understanding of the problem 
by comparing results from water-tunnel experiments with those from two- and three- 
dimensional direct numerical simulations, in which Reynolds numbers and mechanical 
dynamic parameters such as cylinder mass and damping ratios are the same for both the 
experiments and the simulations. 

2. EXPERIMENTAL METHOD 

Figure 1 shows a diagram of the experimental equipment. The set-up uses a cylinder that is 
cantilevered from an air-bearing sled through a bi-axial force transducer. A position 
transducer is attached to the sled, and a spring suspension system provides central restoring 
forces to the cylinder-sled assembly. The bearings are mounted above a water channel; the 
cylinder pierces the water surface and can translate cross-flow on its bearings. The free end 
of the cylinder had an end plate located close to the lower wall of the water channel. DPIV 
measurements of two components of the velocity field can be obtained using laser-sheet 
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- Force balance and position transducer 
^_- Air bearing 

■ (movement normal to page) 

 v—   Water surface 

Laser sheet 

-Test cylinder 

Figure 1. Diagram of experimental set-up in water tunnel working section. 

lighting that is parallel to the water surface, and image capture can be conditioned on 
cylinder position. More detailed descriptions of the experimental apparatus may be found 
in Khalak & Williamson (1997) and Govardhan & Williamson (2000). 

In running the experiments, the cylinder, spring rate and damping were kept constant, 
and the reduced velocity was varied by changing the flow speed, hence the Reynolds 
number varied with reduced velocity. The submerged depth of the cylinder had an aspect 
ratio (length/diameter) of L/D = 26-7:1. The cylinder mass ratio m* = Am/pnD2 = 50-8, 
where m is the sprung mass per unit length of submerged cylinder depth, and p is the density 
of water. The damping ratio, derived from the free-vibration decay rate in air, £ = 0-0024, 
giving a mass-damping parameter m*£ = 0-122 (cf. Feng 1968, where m*C « 0-25). A refer- 
ence Reynolds number is Re = UD/v = 556 at a reduced velocity Vr = UT„/D = 5-00, 
where U is the average free-stream flow speed, T„ is the free-vibration natural frequency in 
air and v is the kinematic viscosity of water. 

Although good response amplitude data could be obtained, difficulty was experienced 
in obtaining reliable force and DPIV measurements at the Reynolds numbers used in 
these experiments. For purposes of comparison with the three-dimensional simulation 
results, we have included force and vorticity data obtained at somewhat higher Reynolds 
numbers (Re « 1250 at peak response amplitude) and mass damping (m*£ = 0-251, 
similar to that used by Feng), as described in more detail in Govardhan & William (2000, 
2001). 

3. SIMULATION METHOD 

The simulation method and its numerical implementation using a spectral element-Fourier 
spatial discretisation has been previously documented in Blackburn & Karniadakis (1993) 
and Blackburn & Henderson (1996,1999). The incompressible Navier-Stokes equations are 
solved in an accelerating reference frame, and this simulation is coupled to that for a set of 
first-order ODEs that describe the motion of the cylinder in response to the forces exerted 
on it by the fluid. The reference frame acceleration, and velocity boundary conditions on the 
outer edge of the flow domain, are set according to the values obtained by simulating the 
response of the cylinder. This method allows simulation of the rigid-body response of 
a freely oscillating cylinder without the overheads associated with distortion of the mesh to 
accommodate motion of the cylinder within the domain. 
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Figure 2. Computational mesh, showing element boundaries; dimensions are based on cylinder 
diameter. 

The computational mesh is shown in Figure 2. For three-dimensional simulations, 
Fourier expansions are used in the cylinder-axis direction; the two-dimensional projection 
of the three-dimensional mesh is identical to that used for the two-dimensional simulations. 
The mesh shown has 502 elements, and 10th-order Gauss-Lobatto-Legendre-based two- 
dimensional Lagrange shape functions were used for the in-plane spatial discretization. This 
was found to be adequate for 4-figure convergence of integral measures of the two- 
dimensional simulation results [see the similar and related tests presented in Blackburn 
& Henderson (1999)]. The dynamic equations are integrated in time using a second-order 
operator-splitting scheme. 

For all the results presented here, the axial extent of the three-dimensional domain 
was 3-28D, with 24 planes of data. While the axial extent and resolution are both lower 
than desirable, the size was limited by computer memory and simulation time constraints. 
The three-dimensional simulations required approximately 2 GB of memory and 12 CPU- 
hours per motion cycle when run on an NEC SX-4 computer (peak speed 
approximately 2 GFLOPS/processor). Typical runs used 4-6 CPUs. 

Reynolds numbers and dimensionless dynamic parameters in the simulations were 
chosen to match those in the experimental set-up, as described in Section 2. It should be 
noted that, even with this degree of matching, cylinder-end boundary conditions differ 
between the experiments and the simulations, since with the adoption of Fourier expansions 
the flow is assumed periodic in the axial direction for the simulations. 

4. RESPONSE AMPLITUDE RESULTS 

A compilation of experimental and simulated cross-flow response amplitudes is presented in 
Figure 3. The average peak dimensionless amplitude A* = ymax/D, while the reduced 
velocity Vr = UTJD is normalized by an appropriate representative Strouhal number for 
a fixed cylinder St =fvD/U to form StFr. This normalization of reduced velocities has been 
carried out because of the disparity of two- and three-dimensional Strouhal numbers at 
these Reynolds numbers: for the two-dimensional results, St = 0-225 (Blackburn & 
Henderson 1999), while for both the simulated three-dimensional and experimental results, 
St = 0-205, where both values are appropriate for a Reynolds number Re ~ 500 (Norberg 
1994). 
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StV, 

Figure 3. Dimensionless average peak response amplitude A* as a function of StFr: •. experimental 
results; ■, three-dimensional simulations; O, two-dimensional simulations. 

4.1. EXPERIMENTAL 

Turning first to the experimental results, the response envelope exhibits three distinct 
branches, similar to results previously presented for higher Reynolds numbers and lower 
mass-damping values by Khalak & Williamson (1997, 1999). The two highest amplitude 
branches, the "upper" and "lower" branches here are less separated in amplitude than for 
the previous results, which is thought likely to be a result both of Reynolds number and 
mass-damping effects. 

4.2. THREE-DIMENSIONAL SIMULATIONS 

The three-dimensional simulations were carried out for reduced velocities chosen to place 
them near the highest observed amplitudes on the upper and lower response branches 
(StFr = 1-13, 1-33 and 1-58). The response amplitudes, while similiar to the experimental 
results, are somewhat smaller, which is thought likely to be a consequence of the restricted 
axial periodic length of the computational domain (3-28D), and, less significantly, to the 
differences in end conditions. The difference in amplitudes for the three values of StFr does, 
however, mimic the experimentally observed behaviour, with the highest amplitude occur- 
ring at the lowest reduced velocity. 

4.3. TWO-DIMENSIONAL SIMULATIONS 

Given the high demand on computer resources made by the three-dimensional simulations, 
it is obviously of interest to compare the results for the two-dimensional simulations with 
the experiments and the three-dimensional simulations. The two-dimensional results were 
obtained using small decrements of U between each run. It is apparent from an examination 
of Figure 3 that, although the peak response observed for the two-dimensional simulations 
is similar to the higher of the three-dimensional results, the computed results are substan- 
tially different from the experimental measurements in terms of the StFr location and extent 
of the peak response branch. It is interesting to note that the general form and position of 
the response amplitude diagram is similar to that observed for two-dimensional simulations 
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at Re = 250, m% = 0-127 — see Figure 2 in Blackburn & Henderson (1996), allowing for 
variation in T„ as opposed to U, which reverses orientation on the abscissa. 

Of the three response branches observed in the two-dimensional results, only the lowest 
amplitude branch was associated with conventional periodic Kärmän-mode vortex shed- 
ding (with period close to that for a fixed cylinder at corresponding Reynolds number). On 
the high-response branch, the time trace of response amplitude was very nearly sinusoidal 
for all simulations, with a frequency near the structural natural frequency; however, only for 
the very highest amplitude did the lift-response phase plane plot approach a closed limit 
cycle with periodic vortex shedding. In this case, however, the wake, although periodic, did 
not exhibit Kärmän-mode shedding — see related unconventional but periodic wake modes 
presented in Blackburn & Henderson (1999). Another significant feature of results on this 
branch is that they all possessed a time-average wake that was asymmetric about the 
cylinder centreline, with a time-mean coefficient of lift. On the low StFr branch with 
moderate response amplitudes, peak values of both the cross-flow response and force varied 
significantly over long time scales. 

5. FORCES AND CROSS-FLOW RESPONSE 

In this section, we present an analysis of force and displacement time-series from the 
three-dimensional simulation at StFr = 1-33, obtained after sufficient simulation time had 
elapsed for these to approach a statistically steady state. Results collected over 20 motion 
cycles are presented — this simulation was also used to collect the phase-averaged results to 
be described in Section 6. 

Figure 4 shows time-series of coefficients of drag and lift, and also of dimensionless 
cross-flow response amplitude a = y{t)/D, presented as functions of normalized time t/Tn. 

2.0 
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-d    1.0 
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0.4 
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"' -0.0 

-0.2 

-0.4 

Figure 4. Time-series of coefficients of drag and lift (Cd, C,), and dimensionless response amplitude 
a for the three-dimensional simulation at StK- = 1'33. 
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Figure 5. Time-series of lift coefficient, its instantaneous magnitude and phase angle in relation to 
cross-flow displacement for the three-dimensional simulations. 

The time-mean coefficient of drag, Cd = 1-32, and the standard deviation of coefficient of lift 
C'i = 0-14. Note the typical "double-peaked" nature of the d waveform. Despite the quite 
large variability in the lift force, the cross-flow response stayed nearly sinusoidal in form, as 
the lift force magnitude is relatively small in comparison to the mechanical restoring force 
for the spring-mounted cylinder. 

Since simulated damping forces are present, there must on average be work done on the 
cylinder by the lift force; for this to be true the time-average phase angle between the lift 
force and cylinder displacement must lie in the range 0-180°. In Figure 5, we present time 
series of the coefficient of lift, together with its instantaneous magnitude and phase angle in 
relation to cross-flow displacement, computed using the Hubert transform (Schumm et al. 
1994; Blackburn & Melbourne 1997). Apart from a single large excursion near t/T„ = 14, 
the phase angle 4> remained near 90°, with average value 4> = 84°. 

The average work done on the cylinder by lift forces can also be assessed by examining 
the area enclosed by a phase-plane plot of C, versus a (Blackburn & Henderson 1999). In 
Figure 6(a) we show the phase-plane plot for the data presented in Figure 4. On the 
C, versus a trajectory, the sense of traverse is clockwise, as it must be for a transfer of energy 
from the fluid to the cylinder. The two largest excursions from the average trajectory 
correspond to the largest positive and negative peaks in the C, time-series, while the 
wave-shaped form of the average trajectory is related to the double-peaked characteristic of 
the C; time-series. In Figure 6(b) we present the phase-plane plot from the related set of 
experiments described in Govardhan & Williamson (2000): this set of data is for StFr = 1-27, 
and it can be seen to have a similar nature (and peak amplitude) to that for the current 
simulations, although the form is more stable over time — however, since the mass- 
damping value is higher than for the present work, the enclosed area in Figure 6(b) is greater 
than that in Figure 6(a). 



Figure 7. Time-history of the distribution of crossflow displacement along the span. A mixed standing-traveling 
wave pattern prevails, unlike the linear shear case. 

Figure 8. (a) Crossflow displacement (r.m.s. values) along the span (normalized with the cylinder diameter), 
(b) Corresponding spectrum showing the (nondimensional) frequency response (range: 0-0-3) along the span. The 
frequency is normalized with the maximum inflow velocity (x-axis: frequency nondimensionalized with maximum 

velocity; y-axis: power spectral density; z-axis: span of the cylinder). 



DNS AND EXPERIMENTS ON VIV 487 

u 

-0.2 

-0.6 

-0.2 

-0.4 

-0.6 

Figure 6. Phase-plane plot of C, versus a; the area enclosed by the average trajectory is representa- 
tive of the average work transfer per motion cycle between the fluid and the cylinder, (a) Data from 
three-dimensional simulaton at StFr = 1-33; (b) data from a set of experiments at higher Reynolds 

number but StFr = 1-27 with a similar response amplitude (Govardhan & Williamson 2000). 

6. VORTEX SHEDDING MODES 

Now we turn to an examination of the topology of the wake for the three-dimensional 
simulation at StFr = 1-33. In Figure 7 we show a plot of instantaneous isosurfaces of 
pressure and streamwise vorticity. Note that, especially in the near-wake, there is intense 
turbulent activity, which is particularly evident in the vorticity isosurfaces — isosurfaces of 
spanwise directed vorticity, or of vorticity magnitude, show similar disorganization. 

In order to find the coherent structure of the near-wake, we have used a phase-averaging 
approach related to that adopted by Cantwell & Coles (1983). Estimates of the ensemble- 
average velocity field are computed from averages taken at four phases of the motion cycle 
— since the motion is very nearly periodic it is appropriate to use the cross-flow motion 
amplitude as a conditioning signal. From the simulations used to produce the data shown 
in Figure 4 we have collected 20 velocity field averages at each of the four phases: t/Tn = 0-0 
(maximum negative displacement), t/T„ = 0-25 (maximum positive velocity), etc. For each of 
these four average fields we compute the vorticity, then its spanwise average. 

Contours of span- and phase-averaged spanwise vorticity for each of the four phases are 
presented in Figure 8. For purposes of comparison, we have also shown contours of 
phase-averaged spanwise vorticity computed from the DPIV data of Govardhan & 
Williamson (2000), measured at StK = 1-27 — the overall similarity of these two sets of 
results is immediately apparent despite some differences in detail. It is evident that in each 
half motion cycle, the shear layer from one side of the cylinder rolls up into two distinct 
concentrations of vorticity as it leaves the near-wake region. As they evolve downstream, 
the four regions of concentrated vorticity form into pairs of counter-rotating vortex couples, 
one on each side of the wake. 

7. DISCUSSION AND CONCLUSIONS 

This work represents the first direct comparison between numerical and physical experi- 
ments in vortex-induced vibration, in which both fluid and mechanical dynamic parameters 
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have been matched. There have been some operational problems on both sides, related to 
the difficulties in obtaining high Reynolds number values in the simulations, on the one 
hand, and low values in experiments, on the other; however, the results are encouraging. 

A significant outcome is that it appears that, at least in the absence of a turbulence model, 
two-dimensional simulations are inadequate for the task of predicting the full nature both of 
the response envelope and of vortex shedding mechanics, even at these low Reynolds 
numbers. This finding is likely to hold both for free and forced cylinder oscillations. 
Whether the difference between two- and three-dimensional dynamics is caused by effects in 
the very near-wake produced by turbulence in the vortex formation region, or perhaps by 
feedback from changed conditions further downstream as the streamwise roller structures 
evident in Figure 7 enhance the transfer of free-stream momentum into the centre of the 
wake, is a matter open for further investigation. 

Another significant outcome is that, for the first time in a set of simulation results, we 
have clear evidence (Figure 8) of the 2P shedding mode first reported in Williamson 
& Roshko (1988). The double-peaked form of the lift time-series exhibited in Figures 4 and 
5 and the characteristic shape of the average C, versus a. trajectory shown in Figure 6 are 
both likely to be related to the shedding of four concentrated regions of vorticity per motion 
cycle, although the relationship remains to be examined in detail. On the evidence of the 
smaller excursions from the average trajectory shown in Figure 6(b), when compared to 
those in Figure 6(a), it appears that the 2P shedding mode may become better established as 
the Reynolds number increases. 
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In the present work, we study the wake velocity field of an elastically mounted rigid cylinder 
oscillating transverse to a fluid flow, using DPIV measurements. It is shown that there are large 
qualitative changes in these velocity fields, depending on the mode of cylinder oscillation. In 
particular, the characteristic "recirculation bubble", usually seen in the mean velocity field 
behind the nonoscillating cylinder, is found to be present in the case of the '2S' wake formation 
mode, yet is completely absent for the '2P' mode. For the '2P' mode, we find instead the 
appearance of a pair of counter-rotating vortices of opposite sign to what is expected, causing 
a downstream-oriented jet-type flow close to the cylinder, which in turn results in a 'double- 
wake' type velocity profile. Measurements of both the total Reynolds stresses, and the periodic 
stresses evaluated using phase-averaged velocity data, show that more than 90% of the total 
stresses are due to the repeatable large-scale coherent structures in the wake, when the body is 
vibrating. Periodic stresses make up only about 60% of the total stresses, in the case of the 
stationary body. Interestingly, for the fixed body, the periodic stresses remain relatively 
unchanged between our experiments (Re = 3900) and those of Cantwell & Coles, at 
Re = 140000, although the total stresses are significantly increased at the larger Re. Our 
experimental evaluation of Reynolds stress is stimulated by the need for such data in developing 
turbulence modelling of these flows, as well as to enable detailed comparison with direct 
numerical simulations. © 2001 Academic Press 

1. INTRODUCTION 

THE PROBLEM OF VORTEX-INDUCED VIBRATION OF A CYLINDER, in particular the case where 
a rigid circular cylinder is elastically mounted and constrained to oscillate transversely to 
a free stream, has been well-studied in the literature, as may be seen from the comprehensive 
reviews of Sarpkaya (1979), Bearman (1984) and Parkinson (1989). However, apart from the 
early work of Griffin (1971) where selected wake velocity profiles were measured at low 
Re K 200, from forced transverse oscillations of the cylinder, there have been no detailed 
investigations of the mean and fluctuating wake velocity fields for such a transversely 
oscillating cylinder. It should be mentioned here that the motivation for the present study of 
the wake velocity field, over a range of Reynolds numbers, Re = 3000-4000, comes from 
Stansby & Apsley (2000) and from Peter Stansby, Julio Meneghini and Hugh Blackburn 
(private communications), who are using turbulence modelling to predict the behaviour of 
an elastically mounted cylinder at high Re, and for which detailed experimental measure- 
ments of the velocity field are useful to validate the modelling procedure. 

The amplitude response (4* = A/D = amplitude/diameter) of such an elastically moun- 
ted cylinder shows two distinctly different types of behaviours, depending on whether one 
has a high or low combined mass-damping parameter (m*(), as shown in Khalak & Will- 
iamson (1999) and Govardhan & Williamson (2000). [The mass ratio, m* = (mass of 

0889-9746/01/040489 + 13 $35.00/0 © 2001 Academic Press 



490 R. GOVARDHAN AND C. H. K. WILLIAMSON 

0-4 0-8 1-2 1-6 2-0 
(U*/f*)S 

1-2 1-6 
(U*/f*)S 

Figure 1. Amplitude response (A* = A/D) of the elastically mounted cylinder as a function of flow 
speed. In the classical high-(m*Q case, only 2 response branches ('Initial' & 'Lower') are seen, whereas 
in the low-(m*Q case, a further higher amplitude 'Upper' branch of response is also observed. The flow 
speed parameter (U*/J*)S = (/"„„//), where/„„ is the stationary body shedding frequency, and/is the 
actual cylinder oscillation frequency. Mass-damping values for the two response plots shown 
are (m* + CA% = 0-251 (High) and (m* + CA)( = 0-013 (Low), while the corresponding mass ratios 
are m* = 320 and m* = 8-63, respectively. •, Present response data; O, location where the wake 

velocity field is measured. 

oscillating structure)/(displaced mass of fluid); and the damping ratio ( = structural damp- 
ing/critical damping.] In the classical high-(m*C) case, an 'Initial' and 'Lower' amplitude 
branch are separated by a discontinuous mode transition. However, in the case of low- 
(m*C), a further higher amplitude 'Upper' branch of response appears, and there exist three 
response branches, as shown in Figure 1. There are therefore two mode transitions in this 
case. The existence of, not one, but two mode transitions at low-(m*Q, and their relationship 
with the forces and wake vortex dynamics, is studied in detail by simultaneous force, 
displacement and vorticity measurements for a freely vibrating cylinder in Govardhan 
& Williamson (2000). The present study of the wake velocity fields is related to work 
reported there. 

Vorticity contours corresponding to the different response branches at low-(m*C) shown 
in Figure 2, indicate that the Initial branch is associated with the 2S wake mode, while both 
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the Upper and Lower branches correspond to the 2P-mode; '2S' indicating 2 Single vortices 
formed per cycle, and '2F meaning 2 Pairs of vortices formed per cycle, as denned by 
Williamson & Roshko (1988) based on their forced oscillation experiments. As may be seen 
from Figure 2, the strengths of the two vortices of each vortex pair are quite unequal in the 
Upper branch, but are roughly equal in the Lower branch. In the case of forced vibration, 
the 2S and 2P modes have also been shown using PIV by Carberry et al. (2001) for the 
forced transverse vibration of a circular cylinder, and these modes are also observed from 
forced oscillations of a tapered cylinder by Techet et al. (1998). At high values of the mass 
ratio, flow visualization of the wake of a freely vibrating wire also indicated a 2S and 2P 
mode, as shown by Brika & Laneville (1993). 

In the present work, we study the mean and fluctuating velocity fields in the wake of 
a freely oscillating circular cylinder, at Re = 3000-4000, corresponding to each of the three 
response branches at low-(m*C), namely the Initial, Upper and Lower branches. For 
comparison, a stationary cylinder case at approximately similar Reynolds numbers 
(Re = 3900) is also studied. 

2. EXPERIMENTAL DETAILS 

The present experiments were conducted using a hydroelastic facility, which is described in 
Khalak & Williamson (1999), in conjunction with the Cornell-ONR Water Channel. The 
hydroelastic facility comprises a carriage mounted on air-bearings situated above 
the channel test section, which allow a vertical cylinder in the fluid to move transverse to the 
free-stream. The turbulence level in the test section of the Water Channel was less than 
0-9%, in the 0-381 mx 0-508 m cross section, over the range of free-stream velocities 
U (0-04-0-32 ms"1) used in this study. The test cylinder had a diameter of 0-0381 m, and 
a length-diameter ratio of 10. 

For the purpose of employing DPIV, the flow was seeded with 14 um silver-coated glass 
spheres, which were illuminated by a sheet of laser light from a 5 W continuous Argon ion 
laser. Images of the particles were captured using a high-resolution CCD Kodak Megaplus 
(1008 x 1018 pixels) camera. Pairs of particle images were analysed using cross-correlation 
of sub-images, our implementation of which is described in more detail in Govardhan 
& Williamson (2000), and resulted in a set of 3600 vectors (60 x 60) for a typical velocity 
field. Each of the mean and fluctuating velocity fields shown in the paper have been 
obtained from about 300 such DPIV velocity fields. 

The origin of the co-ordinate system is fixed at the centre of the cylinder, at zero 
flow speed. The x-axis is downstream, the y-axis is perpendicular to the flow direction 
and to the cylinder axis (defined as transverse), and the z-axis lies along the axis of 
the cylinder. The velocity components along the {x, y, z] axes are denoted as 
{u, v, w}, respectively, and the freestream velocity is denoted as U. The Reynolds num- 
ber, normalized velocity (17* = U/fND), and oscillation amplitude (A* = A/D) corres- 
ponding to each of the three cylinder response modes studied are: Initial (Re « 3000, 
U* = 5-18, A* = 0-33); Upper (Re « 3100, 17* = 5-33, A* = 0-81); Lower (Re « 3700, 
U* = 6-40, A* = 0-60). 

3. MEAN VELOCITY FIELDS 

Although the mean velocity field in the wake of a stationary cylinder has been extensively 
studied, relatively little is known about the velocity field in the wake of a transversely 
oscillating cylinder. The only detailed investigation of the velocity field (in the form of a set 
of velocity profiles) to our knowledge, was conducted by Griffin (1971), for the forced 
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Figure 3. Streamlines for the mean velocity field indicating the disappearance of the "recirculation 
bubble" in the Upper and Lower branches which correspond to the 2P-mode. Re = 3900 for the 

stationary cylinder case shown here and in later figures. 

vibration of a cylinder at low Re « 200. He found that the formation length, defined as the 
location along the wake centreline where velocity fluctuations reach a maximum, reduced 
to half the value found for a stationary cylinder. It is expected that a similar reduction in size 
of the mean "recirculation bubble" will ensue when a body vibrates. At higher Re as in the 
present study (Re = 3000-4000), one might expect large deviations in the mean velocity 
field for the 2P-mode as compared with the wake of the 2S-mode, where the vortices are 
arranged as in a Kärmän vortex street. 

The streamlines for the mean velocity field corresponding to the Initial branch (2S-mode) 
in Figure 3, show the presence of a "recirculation bubble", as in the stationary cylinder case. 
The effect of body vibration, for the 2S-mode, is to markedly shorten the bubble, which is 
consistent with the reduced "formation length" for an oscillating body found by Griffin 
(1971). Interestingly, this "recirculation bubble" disappears for the Upper and Lower 
response branches that are associated with the 2P-mode, as may be seen in Figure 3. 

The mean vorticity field, shown in Figure 4, for the Lower branch (2P-mode) shows the 
presence of a pair of counter-rotating vortices of opposite sign to what one might expect in 
a wake, in contrast to the Initial branch (2S-mode) case. The jet flow induced by this vortex 
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Figure 5. Streamwise velocity profiles at x/D = 1-25. In the Lower branch (2P-mode), the velocity 
profile takes on the appearance of a 'double-wake' profile, due to the jet flow induced by the presence 

of counter-rotating vortices of opposite sign to what is expected in the wake. 

pair, gives the streamwise mean velocity profile a 'double-wake' type appearance, as may be 
seen in Figure 5. It should be mentioned here that this type of 'double-wake' profile was 
observed by Koochesfahani (1989) for a mode of vortex formation downstream of a pitching 
airfoil, which is equivalent to the present 2P-mode. In the Upper branch (unequal 2P-mode) 
case, the mean vortex pair is again present in the mean vorticity field, although in this case it is 
rather weaker than for the Lower branch case, hence the 'double-wake' profile is only just 
discernible. The mean vortex pair, in the case of the 2P-modes found here, may be interpreted 
as due to vorticity being drawn across the wake, to form the second vortex in each pair of the 
2P-mode. It has a sign of vorticity opposite to the classical wake vorticity. The detailed 
formation of the 2P-mode is described further in Govardhan & Williamson (2000). 

4. FLUCTUATING VELOCITY FIELDS 

We present, in this section, global mean Reynolds stresses in the wake, for the stationary 
cylinder as well as for the oscillating cylinder in each of the three branches of response, 
namely the Initial, Upper and Lower branches. In each case, the total Reynolds stress,' 
computed from a large number of instantaneous DPIV velocity fields, as well as the periodic 
component of the Reynolds stress, calculated from phase-averaged velocity data as in 
Cantwell & Coles (1983), is shown. In the present work, the phase averaging of the velocity 
data is performed using the lift force signal as the reference, for the stationary cylinder, and 
using the cylinder displacement signal as a reference, for the oscillating cylinder cases'The 
set of instantaneous velocity fields obtained are divided into 30 different sub-groups, each 
sub-group corresponding to a certain phase of cylinder motion (or lift force), and the 
velocity fields within each sub-group are averaged. The periodic Reynolds stress is cal- 
culated from the resulting 30 phase-averaged velocity fields. 

As discussed by Cantwell & Coles (1983), based on Reynolds & Hussain (1972), a flow 
variable s{t) in the near wake can be viewed formally as a combination of a global mean 
component s, a periodic mean component s (which depends on the phase 0 during a cycle), 
and a random component s'(t). By definition, the total variable s(t) is then the sum 

s(t) = s + s{6) + s'(t). (1) 
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9    0- 

xlD xlD 

Figure 4. Mean vorticity fields showing the presence behind the cylinder of a pair of counter- 
rotating vortices of opposite sign to what is expected in a wake, for the Upper and Lower response 
branches, which correspond to the 2P-mode. Vorticity contours levels shown are a>D/U = + 0-4, 
+ 0-8, + 1-2... (for stationary cylinder and Initial branch), and coD/U = ±0-2, +0-4, +0-8... (for 

the Upper and Lower branches). 
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TABLE 1 
Peak Reynolds stress in the wake of a stationary circular cylinder 

(a) Total Reynolds stress {u"u"/U2) (v"v"/U2) (u"v"/U2) 

Cantwell & Coles (1983)       Re = 140000 
Present                                 Re = 3900 

0-22 
011 

0-43 
0-23 

0-12 
0-085 

(b) Periodic part of Reynolds stress (M/U2) (jä/U2) (fie/u2) 

Cantwell & Coles (1983)       Re = 140000 
Present                                 Re = 3900 

008 
0065 

0-23 
018 

005 
006 

The global mean s, may be obtained by averaging over all the instantaneous velocity fields. 
On the other hand, in order to obtain the periodic mean 3(0), we need to average the data at 
constant phase of vortex shedding (0), as in Cantwell & Coles (1983). Following the notation 
used in Cantwell & Coles (1983), the periodic component (s) may then be defined as 

m = <s>„ - s, (2) 

where <s>e is the mean of s at a particular phase 0. In the present work, we also introduce 
the additional notation, s"(t), as the total fluctuation, defined by 

s"(t) = s(t) - s = s (0) + s'(t). (3) 

If s(t) is the streamwise velocity component u(i), then the total stream wise Reynolds normal 
stress (u"u") would have two components; the periodic component M, due to the repeatable 
large-scale coherent structures in the wake, and the random component u'u', due to the 
random small-scale turbulence, as discussed in Cantwell & Coles (1983) and shown below: 

u"u" = üü + u'u' 

Total = Periodic + Random 

The peak value of the total streamwise Reynolds stress for the stationary cylinder, at our 
Re x 3900, is about (u"u"/U2) «0-11, as may be seen from Figure 6. As one might expect, 
this value is substantially smaller than the peak value of (u"u"/U2) « 0-22 found in the much 
higher Re (Re = 140000) experiments of Cantwell & Coles (1983). However, if instead we 
now compare the peak periodic stress, we find interestingly that their values are quite 
similar, 0065 and 0-08, respectively. In fact, comparison of the peak values of each of the 
other Reynolds stresses between the two widely different Reynolds numbers, also shown in 
Table 1, indicates that in each case, the peak periodic components are very nearly the same, 
although the peak total Reynolds stress is significantly larger for the higher Re experiments. 
This suggests that the repeatable large-scale coherent structures, responsible for the peri- 
odic part of the Reynolds stresses, are quite similar over the range of Re from 3900 to 
140 000. Therefore, the increase in Reynolds stresses over this range of Re seems to be 
principally due to the random component. We suggest that this is fed by the increasing 
strength of the Kelvin-Helmholtz instability of the separating shear layer, as Re increases in 
this "Shear Layer instability regime", defined in the review of Williamson (1996), and first 
studied by Schiller & Linke (1933); see also Roshko's (1993) review.   

For the stationary cylinder case, atour Re = 3900, the maximum total stress (u"u"/U2) is 
about 0-11, while the periodic stress (üü/U2) « 0-065, indicating that in this case the periodic 
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TABLE 2   
Peak periodic Reynolds stress (Si) as a percentage of peak total Reynolds stress {s"s") 

Stationary (%) Initial (%) Upper (%) Lower (%) 

(üü/u"u") 
(vv/v"v") 
(iiv/u"v") 

59 
78 
71 

89 
93 
55 

96 
93 
93 

95 
90 
96 

TABLE 3 
Vortex formation length (lf) 

Stationary Initial Upper Lower 

\V' ^/closure point 

^ f'     ^location of max u"u' 

2-27 
2-33 

1-46 
0-55 0-64 0-68 

part is approximately 60% of the total Reynolds stress. In Table 2, we present percentages 
for the ratios of periodic to total stress, for the three different Reynolds stresses, and 
corresponding to each of the three cylinder response branches as well as for the stationary 
cylinder (see Figures 6-8). A striking feature of Table 2, is the increase in percentages for the 
oscillating cylinder cases, to about 90% or greater, in contrast to the approximately 70% 
level for the stationary cylinder. This would indicate that for the oscillating cylinder, nearly 
all the total Reynolds stress comes from the large-scale periodic dynamics of the flow. The 
above point, combined with the fact that these large-scale periodic coherent structures seem 
to be relatively independent of Re, as noted previously in comparison to Cantwell & Coles 
(1983), would indicate that the Reynolds stresses measured in the present work, for the 
oscillating cylinder at Re = 3000-4000, would be quite representative also of much higher 
Reynolds numbers; a point that could be useful in modelling these problems. [It may be 
noted in Table 2, that unlike all the other cases, the percentage of the periodic shearing 
stress (ß>/U2) in the Initial branch, is quite small, about 55% of the total shearing stress. The 
reason for the low value in this particular case is not known at present.] 

The numerical values of the peak periodic stress, and indeed the peak total stress, can be 
considerably larger for an oscillating cylinder, compared to the stationary cylinder, as may 
be seen from Figures 6-8. In particular, the largest increase in periodic stress appears to be 
for the Lower branch of cylinder response, which corresponds to_the 2P-mode, where 
(M/C/2)max increases by 485%, (£5/[/2)max increases by 100%, and (üv/U2)max increases by 
125%, compared to the stationary cylinder values, which seem to be relatively independent 
of Re. This large increase in the periodic Reynolds stresses in the Lower branch is consistent 
with the large increase (of about 200%) in the total circulation that is shed into the 
large-scale vortices, as discussed in Govardhan & Williamson (2000). The increased vortex 
circulation corresponds with the large increase in fluctuating lift (by a factor of 6), and in 
mean drag (by a factor of 5), as shown in Khalak & Williamson (1997). 

We shall now briefly look at the "formation length" for the oscillating cylinder. Contour 
plots of the total stream wise Reynolds stress {u"u") in the wake, shown in Figure 6, indicate 
that the location of the maximum value of u"u" gets closer to the cylinder when it vibrates, 
compared to the stationary cylinder, consistent with the observations of Griffin (1971), and 
with our earlier observation of a reduction in the size of the recirculation bubble. The 
formation length (lf) has been defined in many ways as discussed recently by Noca et al. 
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(1998) and by Norberg (1998). In Table 3, we show values of lf calculated from the 'closure 

point' (ü/U = 0 on wake centreline), and from the streamwise location of maximum u"u" in 
the wake; in each case lf is measured from the cylinder axis. It can be seen that lf (computed 
in either of the two ways) is considerably reduced for the oscillating cylinder compared to 
the stationary cylinder. However, at the present Re = 3000-4000, the reduction in lf is 
substantially greater than that observed by Griffin at Re « 200. In fact, it is interesting to 
note that one cannot define lf based on the closure point for the Upper and Lower 
branches, as there is no recirculation bubble in these cases. The formation length can 
however still be calculated based on the streamwise location of maximum u"u" in the wake, 
which gives values of lf/D « 0-6, which is substantially lower than the smallest values of 
lf ID x 1-6 reported by Griffin at Re « 200. 

5. CONCLUSIONS 

In this work, we study the wake velocity field of an elastically mounted rigid cylinder that is 
constrained to move transverse to the free stream, using DPIV measurements. 

The measured mean velocity fields indicate that the characteristic "recirculation bubble", 
usually seen in the mean velocity field behind the nonoscillating cylinder, is present in the 
case of the '2S' wake formation mode, but is completely absent for the 2P-mode. For the '2P' 
mode, we find instead the appearance of a pair of counterrotating vortices of opposite sign 
to what is expected, causing a downstream oriented jet-type flow close to the cylinder, which 
in turn results in a 'double-wake' type velocity profile. 

We evaluate the total Reynolds stresses, and the periodic component of stress, computed 
from phase-averaged velocity data, for the stationary cylinder as well as for the oscillating 
cylinder in each of the three response branches, namely the Initial, Upper and Lower 
branches. Comparison of the stationary cylinder peak stresses, at Re = 3900, with the data 
of Cantwell & Coles (1983), at much higher Re (Re = 140000), indicate that although the 
total Reynolds stresses are significantly larger at the higher Reynolds numbers, the periodic 
component of stress is quite similar in both cases. This suggests that the repeatable 
large-scale coherent structures, responsible for the periodic part of the Reynolds stresses, 
are quite similar over the wide range of Re from 3900 to 140000. In the case of the 
oscillating cylinder, typically more than 90% of the total Reynolds stresses are due to 
these repeatable large-scale coherent structures. The above facts suggest that the Reynolds 
stresses obtained in the present work, at Re K 3900 for the oscillating cylinder, would be 
quite representative also of much higher Re cases; a point that could be useful in modelling 
these problems. 

Reynolds stresses at different constant phases of vortex shedding, corresponding to each 
of the three cylinder response modes, have also been computed, but are not included in this 
paper, for brevity. 
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A compliantly-mounted rigid cylinder was towed at Re = 3 x 104, 4-75 diameters behind 
a stationary leading cylinder of the same size. An in-line configuration and a 12-degree 
staggered arrangement each produced large-amplitude galloping responses, and an upward 
extension of the frequency lock-in range to a reduced velocity of at least 17. The frequency 
lock-in begins at nearly the same free-stream reduced velocity as a single cylinder, while a large 
phase change in the lift force occurs at higher reduced velocities, which can be extrapolated 
from the single-cylinder lock-in point. Force spectra indicate that shedding from the upstream 
cylinder is completely unaffected by motions of the trailing cylinder. Furthermore, the motion- 
coupled peaks suggest that only one lift force cycle and one or two drag force cycles occur per 
oscillation, the latter depending on the offset. 

© 2001 Academic Press 

1. INTRODUCTION 

THE WAKE INTERACTION of parallel cylinders arises in many applications, including arrays 
of offshore risers and moorings, and power transmission lines. For nonoscillating 
cylinders, a number of distinct flow regimes exist, which depend on the separation distance 
S (Zdravkovich & Pridden 1977; Igarashi 1981). Small separation distances (S/D < 2) limit 
the reattachment of the leading cylinder's shear layer to the trailing one, and can lead to 
bistable gap flows. Quasi-steady recirculation cells, with coupled vortex formation, occur 
for larger separation distances (2 < S/D < 4), and, finally, vortex roll-up from the leading 
cylinder occurs for S/D > 4, where coupling is diminished. For the case of forced vibrations 
of two tandem cylinders, a wake lock-in exists for the extreme motion phase angles of zero 
and 180°, and lock-in of the wake to the motion occurs over a dramatically expanded region 
of amplitude and frequency, for small S (Mahir & Rockwell 1996). 

In tests where both cylinders are compliantly-mounted, large-amplitude vibrations of 
both cylinders can occur when the separation is about 5-7D, and at least for lateral offsets 
up to 1-5D (Zdravkovich 1985). The vibrations are limited to a specific range of reduced 
velocities, typically beginning at lower values than for a single cylinder. 

Bokaian & Geoola (1984) considered the case of a fixed leading cylinder, and a com- 
pliantly-mounted trailing cylinder. They report both vortex-resonance regions, i.e., motion 
occurring only over a specific range of reduced velocity, and galloping instabilities, where 
motions persist for high reduced velocities. These two types of responses can occur 
independently or coalesce, depending on the separation distance. Vortex resonance occurs 
alone for S/D > 3, for both the in-line case and with offsets of one diameter. In other tests at 
much higher Reynolds number, galloping is suggested for S/D < 7, diminishing as the 
vortex-induced vibration is recovered for large S/D (Brika & Laneville 1999). 

0889-9746/01/040503 + 10 $35.00/0 © 2001 Academic Press 
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Figure 1. Configurations for the in-line and offset VIV tests. 

The tandem arrangement of two cylinders in mid-proximity (S/D = 5-10) creates a re- 
duced natural shedding frequency, with comparison to a single cylinder. When one cylinder 
vibrates freely, however, the wake frequency behind the leading cylinder is unaffected by the 
trailing cylinder. The wake of the trailing cylinder still exhibits a lower Strouhal frequency, 
consistent with reduced mean flow calculations, until it reaches lock-in conditions. Hence, 
on a reduced-velocity scale employing free-stream velocity, frequency lock-in occurs at 
a higher value than for a single cylinder (Brika & Laneville 1999). 

In order to bridge some of these results, we consider here a compliantly-mounted rigid 
circular cylinder in the wake of a stationary fixed cylinder of the same diameter. Locations 
for the trailing cylinder are 4-75 diameters downstream (tandem), and 4-75 diameters 
downstream, with a lateral offset of one diameter (relative angle 12°); see Figure 1. These 
locations are near Zdravkovich's point of maximum response, and near the edge of the 
wake interference zone, respectively. 

2. APPARATUS AND EXPERIMENTAL SETUP 

Tests were conducted at the MIT Testing Tank facility, a 30 x 2-5 x 1-2 m still-water towing 
tank. We used rigid aluminum cylinders with diameter D = 7-62 cm and span L = 200 cm, 
moving at constant speed horizontally; the downstream cylinder oscillates transversely to 
the flow (in the vertical direction). A view of the device from inside the tank is given in 
Figure 2. The cylinders terminate with 0-2 cm gaps onto 31 cm diameter end-plates at each 
end. The downstream cylinder is supported by a pair of three-axis piezoelectric load cells, 
which in turn attach to a heaving structure that also supports the end-plates. This assembly 
is positioned using a lead screw with 30 cm travel, driven by a brushless servomotor. The 
uniform tow velocity for the tests corresponds with Re = 3-05 x 104. 

We employed a robotic force-feedback loop as described in Hover et al. (1998). In this 
system, dynamic lift force measurements are injected into a real-time simulation of a com- 
pliant structure, whose output drives the servomotor reference trajectory, and ultimately 
the physical cylinder. The functional result is a cylinder that appears to be compliantly 
mounted, even though its position is controlled very accurately with a servomotor. In the 
present experiments, the simulated compliance consisted of a simple mass and spring. 
The simulation mass M and stiffness K can be arbitrarily specified by the user, thus allowing 
the variation of nominal reduced velocity Vrn = 2nU/a>„D at constant Reynolds number. 
Here, U represents the steady towing speed of the carriage, and <x>„ = ^/K/M is the 
undamped natural frequency of the virtual structure. 
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tirlgr 

Figure 2. The testing apparatus installed at the MIT Towing Tank, showing one 2 m cylinder, with end-plates 
and lower yoke assembly. Photo viewpoint is inside the tank. 

Intrinsic in the feedback loop is a correction for the component of measured force that 
is due to the inertia in the material test cylinder; this mass is effectively replaced with M. 
The data in the current work were obtained with the nondimensional mass ratio m* = 
4M/pnD2L = 3-0, and an effective damping ratio of about 4%. The nonzero damping ratio 
is an artifact of the closed-loop control system, which imposes some phase loss to achieve 
smooth operation. 

The following coefficients are calculated for each test: (i) average l/10th-highest ampli- 
tude/diameter ratio A/D1/10, with excursions taken from the mean position; (ii) mean drag 
coefficient, mean(Cd); (iii) fluctuating drag coefficient std(Cd), the standard deviation of the 
drag signal; (iv) total lift coefficient amplitude Cx = 2\F\/pDLU2, constructed as the Euclid- 
ean norm of components in phase with vibration velocity and position; (v) phase angle <f>, 
between the oscillating lift force and the imposed motion, computed as an arctangent of the 
lift coefficients in phase with velocity and position. 

3. AMPLITUDE, DRAG, AND LIFT COEFFICIENTS 

We give the amplitudes and force coefficients in Figure 3, and the phase angle in Figure 4. In 
each figure, the calculated value is plotted against nominal reduced velocity for three 
configurations: (a) in-line, (b) offset, and (c) single cylinder. 

The case of a single cylinder is provided for comparison with previously published results, 
and reflects a number of typical characteristics. First, as Vrn increases, the amplitude ratio 
approaches unity, then drops to a short plateau with A/D x 0-75, and then a longer plateau 
at A/D « 0-50, before dropping again in the range of Vr„ = 9-11. This type of A/D response 
envelope, i.e. localized on the Fr„-axis, is termed vortex resonance in the sequel. The 
highest-amplitude part of the curve correlates with a steady drag coefficient of about 3-0, 
and the main plateau matches the zero-motion drag coefficient of 1-25. A similar depend- 
ence can be observed for the fluctuating component of drag, as well as lift coefficient 
magnitude. 
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Figure 3. Average one-tenth highest amplitude of motion (upper left), mean drag coefficient (lower left), 
fluctuating lift coefficient (upper right), and fluctuating drag coefficient (lower right), as functions of Vrn: (a) in-line; 

(b) offset; (c) single cylinder. 

The phase angle for the single cylinder in free-vibration undergoes a rapid transition from 
near zero to near 180°, near Vm = 6-0; this event generally marks a mode change from "2S" 
- to "2P"-type vortex shedding, evident in forced and free vibrations (Williamson & Roshko 
1988; Brika & Laneville 1993). The phase points near 90°, amid the transition, result from 
averaging the phase calculated at each end of the cylinder. In this regime, we often observe 
one large-amplitude end force with 0° phasing, and one small-amplitude end force with 180° 
phasing. 

For both configurations involving interference, galloping occurs, without any clear 
signatures of vortex resonance; the growth of motion with Vr„ is largely monotonic. 
Amplitude ratios become very high, reaching 1-9 in the in-line case and 1-3 in the offset case. 
It is likely that larger amplitudes could also occur at higher velocities. 

Steady drag coefficients for the in-line and offset cases with no vibration, i.e. low Vr„, are 
0-35 and 0-80, respectively. These values are in reasonable agreement with Zdravkovich 



GALLOPING OF A CYLINDER WITH INTERFERENCE 507 

Figure 4. Lift coefficient phase <f> as a function of Vn: (a) in-line; (b) offset; (c) single cylinder. 

& Pridden (1977), and also with the mean wake analysis described by Huse (1992), for which 
trailing cylinder Cd values of 0-49 and 0-83 are generated from a base Cd of 1-2. For the 
in-line case, the mean drag jumps from 0-35 to about 1-2, at Vm « 6, although some scatter 
exists. In contrast, the offset case has Cd increasing to about 1-8 at Vrn ^ 5, before a gradual 
descent to about 1-0 at the higher Vr„. Roughly speaking, these upward jumps in mean 
Cd for both configurations correspond to regimes of highly irregular amplitude ratios. 

Fluctuating drag for the offset case reaches the same maximum value as the single 
cylinder, although at a slightly higher V„, and then declines gradually to a value near 0-4, 
markedly higher than the single cylinder. When the trailing cylinder is in-line, values are 
much lower overall, and a local minimum at Vr„ x 5-5 is in the same area of scattered 
amplitudes noted above. 

Peak lift coefficients C, for the interference cases are much lower than for the single 
cylinder, and both curves have an area of low value, again roughly in the regime of scattered 
amplitudes. Noteworthy is the fact that each lift coefficient has the nature of a vortex 
resonance, in the sense that it decays at high velocities. Phase angle, however, indicates that 
the main transition occurs well away from the usual range of Vrn. The in-line configuration 
changes phase at Vrn = 9-11, while it changes over a larger range, Vm = 7-10, for the offset 
case. Several effects are likely. The in-line cylinder arrangement imposes a reduced mean 
flow on the trailing cylinder, while in the offset case, the trailing cylinder can additionally 
emerge from the wake periodically, and is therefore exposed to higher velocities. Further 
discussion of phase variation is given in Section 5. 

Interestingly, no unique features in any of the other coefficient plots (Figure 3) signal the 
phase change with wake interference. For the single cylinder, amplitude and mean drag 
both drop dramatically through the phase change. 

4. SPECTRAL DESCRIPTION OF RESPONSES 

In Figures 5-7 are plotted the spectral content of the displacement, and lift and drag forces. 
Each set of Fourier transform magnitudes has arbitrary scaling, and these are overlaid on 
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Figure 5. (a) Displacement and (b, c) force spectra of a cylinder centered 4-75D behind a stationary leading 
cylinder. 

a vertical Fr„-axis. The horizontal axis carries normalized frequency, scaled so that unity 
corresponds with the undamped natural frequency of the structure. Dashed lines are also 
given in each subplot, which follow the evolution of various peaks. Spectral peaks widen at 
the higher reduced velocities, but this is only a remnant of the frequency nondimensionali- 
zation, since all of the tests were performed at the same physical velocity. 

In Figure 7 (single cylinder), the lines classify features in the following ways. The 
displacement (y) and lift (Fy) peaks follow the single-cylinder shedding frequency 
cos (St = 0-185) at low Vm, and lock on to the structural mode ca„ at around Vrn = 6-5. The 
locked-in nondimensional frequency coy/co„ ~ 1-15 is typical for tests with m* = 3, where 
negative added mass significantly increases the net natural frequency. Lift force spectra 
track the motion spectra closely, becoming quite small for Vr„ > 10. The fluctuating drag 
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Figure 6. (a) Displacement and (b, c) force spectra of a cylinder located 4-75D behind a stationary leading 
cylinder, with a one-diameter lateral offset. 

force (Fx) is significant only near the onset of lock-in, and the peak here follows the second 
harmonic of <oy. The lift and drag forces thus indicate the simplest modes of VIV, involving 
2S and 2P types of wake. 

For the in-line experiments of Figure 5, oscillations are narrow-banded, and occur near 
and just above co„; the amplitude A/D1/10 grows throughout the range of reduced velocity. 
Lift has very significant components at both the frequency of motion coy and at cos, 
especially for high Vr„. The shedding frequency plotted here is the same as that for the single 
cylinder, and therefore likely relates to the incoming wake. Below the phase change at 
Vr„ ^ 10, the lift force is primarily at coy; above the phase change, cos dominates for a short 
while, before a peak at coy grows to similar magnitude. The phase transition occurs at 
a Vr„ where the lift force peaks are broad-banded and small. 
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Figure 7. Displacement and force spectra of a single cylinder. 

The drag signals present at least four traceable frequency peaks. The dominant force 
occurs at 2coy, but there are also harmonics at 3coy and 4coy. Additionally, we see significant 
energy at coy + cos, for Vr„ > 11, above the phase change. Other harmonics may be present 
as well, although they do not appear to be as repeatable. 

When the trailing cylinder is moved to the offset position, the main frequency of motion 
is still centered just above the structural mode. Lift has a strong component at the shedd- 
ing rate throughout the range of Vrn, although a component at coy intensifies at high Vrn, as 
for the in-line case. Drag has a dominant component at coy, and a significant second 
harmonic. We observe fluctuating drag at cos and coy + o)s also, the latter for the highest 
range of Vr„. 

5. DISCUSSION 

Both of the wake-interference systems considered show strong galloping, in the sense that 
vibrations occur for a wide range of reduced velocities, and seem to increase with Vr„. The 
result pertains to a separation distance smaller than that of Brika & Laneville (1999), whose 
data arguably points to galloping below S/D = 7. With regard to the other studies, we 
employed a much higher Reynolds number than Bokaian & Geoola (1984). High wake 
sensitivity to Re has in fact been noted for tandem stationary cylinders, but in somewhat 
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TABLE 1 

Physical parameters of some wake-interference VIV studies 

Reference Response Re/104 L/D 
Blockage 

ratio sc m* 

Zdravkovich (1985)* 
Bokaian & Geoola (1984)f 
Brika & Laneville (1999)f 
Current studyt 

VR 
VR 

VR, G 
G 

1-8 
006-0-6 
0-51-2-75 

3-2 

11-7 
18-1 
52-7 
26-3 

0-042 
0053 
0018 
0-045 

23 
107 
0-78 
0-95 

1126 
8-42 

^1000 
3-0 

* Leading cylinder compliantly mounted. VR: vortex resonance; G: galloping. 
t Leading cylinder stationary. 

closer proximity (Igarashi 1981). Compliance of the leading cylinder remains a dominant 
factor in the response; Zdravkovich (1985) observed vortex resonance in the same geometry. 
Table 1 lists these references, along with some of the physical parameters from the 
experiments for comparison. 

Contrasting with Brika & Laneville (1999), the traceable effect of lower mean velocity on 
the rear cylinder is not so much an increase in the free-stream Vrn at which motion starts, 
but rather on the location of the phase change. An extrapolation of phase change location 
from single-cylinder tests can be made using the same mean wake analysis as for the drag 
coefficient in Section 3 (Huse 1992). In terms of the drag coefficients, the corrected reduced 
velocity for a feature occurring at V*, in free-stream conditions, is 

V* [mean(C,)fre7mean(Cd)
wake]1/2, 

where the superscript "free" indicates exposure to the free-stream velocity, and "wake" 
indicates wake flow conditions. Since phase passes through 90° at Vrn ^ 6-5 for the single 
cylinder, we then have the estimates Vr„ ^ 10-2 for the in-line wake, and for the offset wake 
Vr„ c± 7-8. These values are in good agreement with Figure 4, and suggest that the primary 
mechanism for Vr„ -dependent phase change stays remarkably intact in the wake. On the 
other hand, the trailing cylinders begin to oscillate at the same free-stream Vrn as a single 
cylinder, and at identical frequencies. With respect to a local Vrn scale, the trailing cylinder 
locks to the structural mode quite early, by Vrn = 3-8 for the in-line case. Thus, a phase 
change and frequency locking to the structural mode cannot both define lock-in in the usual 
sense: wake interference causes these events to occur independently. 

Despite the variation of reduced velocity that marks the lift phase change, the component 
frequencies of lift evolve largely as expected. There are two main peaks at high Vrn: <as, 
associated with the stationary leading cylinder, and another coy ~ co„, associated with the 
primary motion near the structural mode. First, we may observe that no reduction of a>s is 
evident; the same value, St = 0-185, matches peaks throughout, for every configuration. 
Thus, the normal shedding mechanism from the leading cylinder is completely unaffected by 
even the large-scale motions of the trailing cylinder. 

With regard to the second component of lift, the drag spectra in the in-line configuration 
indicate motion-coupled forcing consistent with two or four symmetric vortices per cycle. 
The existence of a smaller third harmonic of coy probably pertains to an odd symmetry such 
that some forcing cycles may be sporadic. Nonetheless, the typical mechanisms for motion- 
coupled shedding seem to be present. For the offset case, drag peaks occurring at cos corre- 
late with one out of two shed vortices from the leading cylinder reaching the rear cylinder, 
or at least a significant imbalance in the pressure force from the pair. Note that, in the 
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corresponding lift spectra, we cannot discern directly whether one or two incoming vortices 
per cycle cause lift, since they may now act on the same side of the trailing, offset cylinder. 
The dominant motion-coupled peak in drag near coy similarly indicates that the loading has 
a large asymmetry, especially at high Vm. 

6. CONCLUSIONS 

Lightly-damped cylinders in free vibrations 4-75D behind a stationary cylinder are capable 
of large-scale galloping, helping fill-in a gap between similar tests at larger spacing ratios, 
and the case of dually compliant cylinders. Frequency lock-in occurs at a low reduced 
velocity and remains through Vrn = 17, but the phase change, which typically accompanies 
frequency lock-in, occurs at higher speeds. This phase change is of the same nature as for 
single-cylinder tests, and suggests the same fundamental mode transition. 

The spectra of the rear cylinder lift and drag forces allow a plausible description of 
a simple motion-coupled forcing superimposed with a stable wake from the leading 
cylinder. The former component in the in-line case indicates two or four symmetric vortices 
per cycle throughout the range of Vr„; for the offset cylinder, a one-sided loading is evident. 
We plan DPIV and anemometry tests to verify these observations. 
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A new form of dynamic response for a flexibly mounted, rotating cylinder in a current, as 
observed in experiments, has been investigated through 2-D, laminar CFD. Orbital response of 
opposite rotation to that of the cylinder and with amplitudes of several diameters can occur 
with a maximum at a = 0-3, where a is the ratio of current velocity to rotation speed of the 
cylinder surface. Instantaneous flows and forces for this a value are related to those for 
a nonresponding cylinder but it is shown that the forcing is far from quasi-steady and is due to 
rapidly changing wake structures during part of a cycle. 

© 2001 Academic Press 

1. INTRODUCTION 

FOR DEEP-WATER offshore oil exploration, the possibility of using a drillstring without an 
outer casing is of operational interest. It poses the hydrodynamic problem of a flexibly 
mounted rotating cylinder in a current. To investigate this, simple experiments with a lightly 
damped rotating cylinder in a current and computational fluid dynamics (CFD) have been 
undertaken. 

A new form of orbital response was observed in the experiments. It is mainly dependent 
on the ratio, a, of current velocity, UCUI, to cylinder surface velocity, UI0t, and the reduced 
velocity, Vr = Ucm/f„ D, where f„ is the natural frequency in water and D is the diameter. 
Low-frequency response with an amplitude of several diameters can occur with 
0-25 < a < 0-5, the orbital rotation being of opposite sense to the cylinder rotation, and 
high-frequency response of small amplitude, with orbital rotation of the same sense, may be 
superimposed, becoming more noticeable as a decreases. Elementary potential-flow analy- 
sis consistently predicts that there will be two natural periods of orbital oscillation: one 
larger than the structural natural period and one smaller. This analysis combined with 
empirical estimates of the Magnus force gave approximate predictions of the oscillation 
frequencies observed. The analysis does not, however, explain the origin of the hy- 
drodynamic mechanisms causing the response to occur. In order to understand this, a 2-D 

t Also with W. S. Atkins Ltd, Berkshire House, 171 High Holborn, London WC1V 7AA, U.K. 
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computational study has been undertaken where streamline and vorticity plots may be 
related to response and force time histories. Such numerical simulation is now quite reliable 
for unsteady, laminar flow which, in 2-D, may be undertaken on modern workstations. The 
finite-volume code of Lien & Leschziner (1994) has been adapted for cylinder flows (Cobbin 
et al. 1998) and further modified to allow dynamic response by modifying the outer 
boundary conditions to define the velocity relative to the cylinder and the pressure gradient 
with the effect of relative flow acceleration. The resulting computed force includes 
a Froude-Krylov component which must be subtracted to correspond with the force in 
the experimental conditions. Values of mass, damping and natural frequency typical of 
the practical situation are chosen: the cylinder mass is given a relative density of 2-83, 
the logarithmic decrement of damping 8 = 0-01 and Vr = 14. A Reynolds number 
Recur = UCUI D/v = 200 (v is kinematic viscosity) was chosen for the dynamic simulations as 
this is approximately the largest value (for nonrotating cylinders) which allows 2-D flow, 
before 3-D effects appear. This is an order of magnitude lower than that in the experiments 
which is an order of magnitude lower than in the offshore problem. 

The mass-spring-damper system defining the displacements with two degrees of freedom, 
x and y, is given by 

x + 2cw„ x + colx — 2ca>(o„y = FJm, 

y + 2ccony + a>ly + 2c(oco„x = Fy/m, 

where m is the mass per unit length, Fx, Fy are forces per unit length in the x- and 
^-directions, a> is the angular rotation (clockwise) speed of the cylinder, co„ and c are the 
structural natural frequency and damping ratio in vacuo/air (although the value of /„ in 
water is used to define Vr). Note the additional cross-coupling effect due to cylinder rotation 
(Bishop 1959). 

It is the intention of this note to summarize some of the CFD results which give insight 
into the origin of the response where it is a maximum. Further detailed description, 
including experiments, potential-flow analysis and CFD, will be given in Stansby & Rainey 
(2001). 

2. RESULTS 

It is first important to known how the flow around a rotating cylinder which is not 
responding depends on a. Figure 1 shows streamline plots with Recur = 200 and 
a = 0-2, 0-25, 0-3, 0-5 and 1-0. For a = 0-2, the stagnation point is detached from the 
cylinder surface (and on the y-axis); the streamlines are similar to those of a point vortex in 
a uniform stream. For a = 0-25 the stagnation point has moved closer the cylinder surface 
and a steady wake has started to form with a = 0-3. Note that the stagnation point never 
actually reaches the surface due to the surface velocity. For a = 0-5, the wake has increased 
in size but remains attached, fluctuating slightly about a mean position. For a = 1, vortex 
shedding has become established, generating fluctuating lift and drag forces as shown in 
Figure 1(f). The dependence of these flows on a is consistent with the early experimental 
visualisations shown in Prandtl & Tietjens (1934). 

Computed variations of mean lift and drag with a are shown in Figure 2 with Recur = 200 
and 103, where drag coefficient is defined in the usual way, CD = drag/(0-5 pU^mD), and lift 
coefficient is defined as the fraction of the in viscid Magnus force, cL = lift/(pl/curr) where 
r = nDUIot and p is water density. From the present computations, for small a, CD is very 
small and cL -> 1 as a -» 0, in agreement with the theoretical (asymptotic) analysis of Moore 
(1957). 
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Figure 1. Computed streamline plots for a nonresponding rotating cylinder with Recur = 200:(a) a = 0-2, (b) a = 0-25, (c) a = 0-3, (d) 
a = 05, (e) a = 1-0; (0 lift and drag force variation with time for a = 10 (force normalized by pU2

rot D/2). Flow is from left to right. 
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1 1.2 

Figure 2. Computed mean force coefficients for a fixed rotating cylinder, (a) cL variation with a: O, Recur = 200; 
+ , Recur = 103. (b) CD variation with a; notation as in (a). 
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Time 

800 1000 

Figure 3. Variation of y/D and x/D with (tUrJD) for ä = 0-3 and Vr = 14. 

When the cylinder is free to respond (for tUtot/D > 5) with the parameters defined above, 
x- and y-response variations with time are shown in Figure 3 with the corresponding 
y versus x plot in Figure 4, showing the orbital nature of the response and some small- 
amplitude, high-frequency effects. The anticlockwise, large orbital response is of opposite 
rotation to the clockwise cylinder rotation and the small, high-frequency response is of the 
same rotation. Points of maximum and minimum x-response are denoted by A and C and of 
maximum and minimum y-response by B and D. Time variations of force in the x- and 
y-directions, Fx and Fy, are shown in Figure 5 and can be seen to be in phase with response. 
The high-frequency force fluctuations are associated with the high-frequency response 
between A and C. 

The "instantaneous" cL and a due to flow relative to the cylinder are of interest to 
determine whether quasi-steady assumptions are of value. It is well known, for example, 
that the flow-induced oscillation known as galloping, resulting from the variation of lift 
with angle of incidence for noncircular sections, is a quasi-steady phenomenon. Since a is 
now an instantaneous value ä is now used to define Ucm/UI0t. Instantaneous lift and drag 
coefficients and a are based on the relative onset velocities: utel = C/cur - x, vrel = - y, so 
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Figure 4. Variations of computed y responses with x, both normalized by D. 
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Time 

Figure 5. Variations of x- and y-forces with time (tUrJD). Force is normalized by pUfM D/2. 

that the angle of incidence 0 = tan"1 (tw/wrei) and velocity magnitude U = ~Ju^\ + ur
2ei 

gives an instantaneous a = U/ UIot. The corresponding lift and drag forces transverse to and 
in line with the instantaneous onset velocity are given by 

FL = Fy cosd -Fxsin0, 
FD = Fx cos 0 + Fy sin 0. 

(2) 
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Time 

800 1000 

Figure 6. Variations of instantaneous ct, cD and a with time (tUrJD) for ä = 0-3 and Vr = 14-0. 

Lift is then normalized so that instantaneous cL = FL/(pUr) and cD (as distinct from CD) is 
normalized in the same way for comparison with cL. Variations of cL, cD, and a with time are 
shown in Figure 6 and points A-D are marked on the cL curve. 

From Figure 6 it is clear that a rapid increase in a around time A coincides with a rapid 
decrease in cL. Corresponding streamline and vorticity patterns (for flow relative to the 
cylinder) are shown in Figure 7 for times tUtJD = 780, 785, 790 and 795. For "small" a, 
corresponding to times between C (tt/rot/D = 647), and A (tUtJD = 782), the stagnation 
point is well below the cylinder, typical of a nonresponding cylinder with a < 0-25. As 
a increases rapidly through time A, the stagnation point moves upwards towards the 
cylinder and an attached wake starts to form soon after time A, at about time 785. By time 
790 a wake has formed, associated with a marked decrease in cL. With high a values around 
time B the attached wake fluctuates rapidly about some slowly varying position and this is 
responsible for the high-frequency components in the force variation, the period being 
about 9D/UTOt. By time C the wake is about to collapse and the stagnation point move 
away from the cylinder as the cycle is completed. 

Plots of cL against a are shown in Figure 8 with positions A-D marked. These are plotted 
for the second half of the time-series where the motion has become periodic. It can be seen 
that the gradient is generally negative and periodic dynamic response is associated with 
a pronounced hysteresis loop. It is interesting to see that the high-frequency behaviour is 
quite repeatable from one cycle to another. The cL versus a curve effectively defines the 
response since cD is small in relation to cL. Unfortunately, the curve is quite complex and 
different for each value of at [shown in Stansby & Rainey (2001)]. The variation of cL with 
a in a cycle is thus far removed from the mean cL versus a variation for a nonresponding 
cylinder. 

It should be mentioned that these computations are extremely time-consuming. The 
high-frequency flow structures need to be resolved requiring a small time step while the slow 
oscillations require long times to cover several cycles. The above run required 4-5 days of 
computation time (each) on a modern workstation (Dec Alpha 600). A mesh with 80 x 80 
nodes was used with an inner radial mesh spacing of yJlvAt, where At is time step (the 
diffusion length scale), and an outer boundary at 20D. A time step given by AtUtot/D = 0-05 
was used. Using a 120 x 120 mesh with an outer boundary at greater distances showed 
convergence almost of within plotting accuracy. 
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Figure 8. Plots of instantaneous cL against a. 

0.7 

3. CONCLUSIONS 

The large orbital response of opposite rotation to that of the cylinder, observed in 
experiments, has been qualitatively reproduced by CFD for laminar 2-D flow. Maximum 
response occurs with ä = 0-3 and results for this case with Vr = 14 are shown to aid 
understanding of the hydrodynamic mechanisms causing response. The response and force 
are shown to be in phase, and there is a rapid decrease in "instantaneous" lift coefficient cL 

associated with rapid movement of the stagnation point towards the cylinder, causing wake 
formation. This is associated with a rapid increase in instantaneous a. As the cycle 
progresses, wake formation eventually ceases and the stagnation point moves away from 
the cylinder; a decreases and cL increases until the dramatic changes noted above are 
repeated. There is some similarity with flows for a nonresponding cylinder at different 
(constant) ä values. However, the plot of cL versus a shows that the forcing is far from 
quasi-steady with pronounced hysteresis. High-frequency, small-amplitude response is 
superimposed for part of the cycle; both the low- and high-frequency responses are 
consistent with elementary potential-flow analysis. A more general description and analysis 
is given in Stansby & Rainey (2001). 
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This investigation considers the wake states of a cylinder subjected to forced oscillations at 
frequencies close to the Karman frequency. Two distinctly different wake states are observed. 
The emphasis is on the transition between these states, which is characterized in terms of the lift 
force on the cylinder and the instantaneous patterns of vortex structures in the near-wake. As 
the frequency of oscillation increases, there is simultaneously an abrupt jump in the lift force 
and a change in the mode of vortex shedding. The jump in the lift force involves a sharp increase 
in the magnitude of the lift coefficient and a phase shift of the order 180°. The corresponding 
mode change involves an alteration in both the timing of the vortex initially shed from the 
cylinder and the overall pattern of vortices in the near-wake. Whilst previously these changes 
have been observed individually in separate forced vibration investigations, we show conclusive 
evidence that these two events are intrinsically linked. Moreover, for a narrow band of 
frequencies, a self-excited transition is possible, where the wake state changes while the cylinder 
oscillates at a constant frequency. © 2001 Academic Press 

1. INTRODUCTION 

FLOW PAST A STATIONARY CYLINDER results in organized vortex shedding at a characteristic 
frequency/„. Controlled excitation of the cylinder at frequencies fe, close to the frequency 
f„ of the natural instability, results in significant changes in both the wake structure and the 
forces on the cylinder. 

The interaction of a flow field and an oscillating cylinder has received extensive investiga- 
tion. An early study by Bishop & Hassan (1963) found that, as/e//„ increased through unity, 
the lift force showed a sharp increase in amplitude and a phase "jump" of close to 180°. 
Similar changes in the lift force have been observed by a number of researchers including 
Sarpkaya (1995), Gopalkrishnan (1993) and Staubli (1993). Separate studies have shown 
that there are also significant changes in the vortex patterns of the near-wake around 
fe/f0 = l; these investigations have focussed on either qualitative or quantitative visualiz- 
ation. Williamson & Roshko (1988), in their extensive mapping of vortex shedding modes, 
observed a change in the mode of vortex shedding from 2P to 2S. Changes in the wake 
have also been described in terms of the timing of the initially formed vortex: Ongoren 
& Rockwell (1988) and Gu et al. (1994) found that as/e//0 increased there was a systematic 
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shortening of the wake, until at a critical/«,//» close to unity, there was an abrupt change in 
the sign of the initial vortex. This change in timing is related to an alteration of the 
near-wake topology. Furthermore, the near-wake of an oscillating cylinder is directly 
analogous to the wake from the thick trailing edge of a plate. Staubli & Rockwell (1989) and 
Lotfy & Rockwell (1993) have defined a change in timing of the initially shed vortex similar 
to that of the foregoing cases of the wake from a circular cylinder. 

A link between the wake mode and forces on the cylinder was established numerically by 
Blackburn & Henderson (1999). They found that a change of the lift force on the oscillating 
cylinder was associated with a change in the timing of the initially shed vortex. However, 
they did not observe the 2P mode of vortex shedding described by Williamson & Roshko 
(1988). This may have been due to their simulation being two-dimensional, and also at a low 
amplitude of oscillation and Reynolds number. They also found that, for a given/,//, the 
wake could exhibit two different states and that these states were not always stable. Staubli 
& Rockwell (1989) show that, for controlled oscillations of the thick trailing edge of a plate, 
there is a relationship between the switch in timing of the initially shed vortex and an abrupt 
change in the phase and magnitude of the lift force determined from pressure measurements. 

Both the jump in the properties of the lift force and the change in either the mode of 
vortex shedding or the sign of the initial vortex, have been observed over a wide range of 
Reynolds numbers and oscillation amplitudes. While the finer details of these changes may 
vary with flow parameters such as Re and A/D, the abrupt changes described above appear 
to be a robust feature of these flows. The present work is an experimental investigation of 
the link between changes in the wake of an oscillating cylinder and the forces on the 
cylinder. In particular, we focus on patterns of vorticity and their relationship to the 
amplitude and phase of the unsteady lift. 

An interesting aspect of the forced oscillation of a cylinder is how it relates to self-excited 
vibration induced by vortex shedding. Recently, the elastically mounted cylinder has 
received considerable attention, particularly for cases with low mass damping. As the 
reduced velocity is varied, there are abrupt changes in the amplitude of oscillation and the 
phase of the lift force. These features have allowed the flow to be categorized into different 
branches, as presented by Khalak & Williamson (1999). Brika & Laneville (1993) found 
that, as their long vibrating cable moved from the initial branch to the lower branch, there 
appeared to be a corresponding change in the mode of vortex shedding from 2S to 2P. More 
recently Govardhan & Williamson (2000) have presented evidence that, as the reduced 
velocity decreases (analogous to an increase in///), the movement of the flow state from the 
upper or lower branch to the initial branch corresponds to a change in the mode of vortex 
shedding from 2P to 2S, and a change in the phase of the vortex lift force. They also 
observed a change in the timing of vortex shedding and therefore a change in the sign of the 
initially formed vortex. The changes in the forces and wake modes in vortex-induced 
vibrations appear to have many features in common with the simplified case where the 
cylinder oscillations are forced. 

2. EXPERIMENTAL METHOD 

The experiments were performed in a free-surface water channel at Lehigh University. The 
working section had a width of 914 mm, depth 609 mm and was 4928 mm long. The 
free-stream velocity U was 0-090 ms'1 with a turbulence level of less then 0-1%. A sche- 
matic of the experimental apparatus is shown in Figure 1. The 317-5 mm long cylinder had 
a diameter D of 25-4 mm giving an aspect ratio of 12-5. The Reynolds number based on 
U and D was 2-3 x 103 and the Kärmän frequency, /, of vortex formation from the 
corresponding stationary cylinder was 0-748 Hz. A high-resolution stepper motor system 
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Figure 1. Schematic of experimental system. 

was used to oscillate the cylinder transverse to the free stream such that its vertical motion 
was given by 

y(t) = Asin{2nfet), (1) 

where A is the amplitude of oscillation and/e is the frequency of oscillation. 
The amplitude of the oscillations was held constant at A/D = 0-5, while the frequency was 

varied over the range 0-5 <fe/f, < 1-4. For each value of/e//0, the cylinder started oscilla- 
tions from rest at t = 0, corresponding to the beginning of the force traces. Following each 
experiment, the cylinder remained stationary in the free stream for a time equivalent to 
more then 500 Kärmän cycles. 

A cross-section of the flow was illuminated by a laser sheet, as shown in Figure 1. 
A transparent laser window incorporated into the cylinder allowed the laser to illuminate 
the flow on the opposite side of the cylinder. The velocity field around the cylinder was 
measured using a laser scanning version of high-image-density particle image velocimetry, 
described by Rockwell et al. (1993). The images were recorded on high-resolution 35 mm 
film and digitised at 106 pixels/mm. The velocity field was calculated by employing a single- 
frame cross-correlation technique. An interrogation window of 90 x 90 pixels and overlap 
ratio of 0-50 resulted in a velocity field with 3700 vectors. 

The span-averaged forces on the cylinder were measured using strain gauges in a full 
Wheatstone bridge configuration. For each experiment 5000 data points were sampled at 
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a Nyquist frequency of 6-25 Hz. The inertia forces due to the vertical acceleration of the 
cylinder were calculated and subtracted from the lift force. For the range of frequencies 
studied, the wake was "locked-on" to the cylinder oscillation and the dominant frequency in 
the lift forces was/e. Thus, the lift force can be approximated by a sinusoidal function: 

Lift(t) « ÖpU2DL)CLsm(2nfet + <j>m), (2) 

where CL is the amplitude of the lift coefficient and <j>m is the phase with respect to the 
cylinder displacement, y(t). Both CL and 4>m were calculated in the time domain using data 
points corresponding to more than 400 cylinder oscillations. 

3. RESULTS AND DISCUSSION 

3.1. RELATION OF LIFT FORCES TO WAKE MODES 

The amplitude and phase of the lift coefficient are shown as a function of/e//„ in Figure 2(a). 
At low values of/e//0, the lift force has a small amplitude and is approximately out-of-phase 
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Figure 2. (a) Lift phase, </>m, and amplitude of the lift coefficient CL as a function of frequency ratio 
fe/f0, in which fe is the excitation frequency and f0 is the Kärmän frequency: o, lift phase; •, CL. 
Instantaneous vorticity fields are shown in (b) and (c). The time trace inserts show the instantaneous 

lift and displacement, where the timing of the image acquisition is indicated by a small circle. 
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with the cylinder displacement, y. As /„//„ increases, the lift properties do not vary 
significantly until /„//«, = 0-81. At this value, there is simultaneously an abrupt increase in 
CL and a drop in (j>m such that the lift force is approximately in-phase with the cylinder 
oscillation. The sharp jump in the lift properties has been observed in previous studies: 
Bishop & Hassan (1963), Sarpkaya (1995), Gopalkrishnan (1993) and Staubli (1993). As/«//, 
increases further, the lift properties change gradually: CL increases and (f>m decreases. The 
simultaneous jump in CL and 0iift is indicative of significant changes in the cylinder wake. 
The sharp change in the lift properties is referred to herein as a transition from a low- 
frequency lift force to high-frequency lift force. The properties of the lift force can now be 
associated with either low frequencies before transition, or high frequencies after transition. 
Before transition, CL is small and <j>mt is large, while after transition CL is large and $iift is 
small, and generally negative. 

The value of the lift phase indicates the direction of energy transfer between the cylinder 
and the fluid. When 0 < </>iift < 180°, there is positive energy transfer from the fluid to the 
cylinder. The oscillation of an elastically mounted cylinder requires positive energy transfer 
to the cylinder and therefore the lift phase is restricted to values 0 < <£iift < 180°. However, 
when the cylinder is forced to oscillate, all values of 4>\m are physically possible. For the case 
presented here, the direction of energy transfer went from positive to negative as 0Uft passed 
though 0°. Generally speaking, for forced oscillations, the value of 0iift, and therefore the 
direction of energy transfer, may also depend on Re and A/D. 

We now consider transition in terms of the structure of the near-wake. The instantaneous 
vorticity fields in Figure 2(b,c) show the wake structure for values of/<.//„ on either side of 
transition. The images, both acquired at the top of the cylinders oscillation cycle, show two 
distinctly different wakes. Figure 2(b) is representative of the wake mode at low frequencies 
before transition, while Figure 2(c) is representative of the wake mode after transition. 
Comparing the two cases, we see that the vortex structures in the near-wake are of opposite 
sign. At/e//0 = 0-806 a negative vortex structure is formed from the attached shear layer and 
a positive initial vortex forms close to the cylinder. After transition, at fe/f0 = 0-869, the 
structure that is shed into the wake is positive and the initial vortex is negative. The change 
in sign of the vortex structures is consistent with the shift of approximately 180° in the lift 
phase. In the present investigation, a similar change in timing was also evident at lower 
amplitudes of oscillation; however, in these cases the formation of the 2P wake mode was 
not well defined. This finding is consistent with previous work at low amplitudes, including 
that of Gu et al. (1994) and will be reported in a forthcoming publication. 

We now consider in more detail the wake modes on either side of the transition region. 
Figure 3 shows the time evolution of the vortex structures during the downwards stroke of 
the cylinder. At the top of the oscillation, the low-frequency wake (/>//„ = 0-806) has a long 
negative vortex structure extending across the back of the cylinder and into the lower half of 
the wake. However, at the same phase of the oscillation cycle the attached negative vorticity 
in the high frequency wake (/«■//„ = 0-869) takes the form of a small concentrated structure 
at the back of the cylinder. As the cylinder moves downwards, the negative vorticity in the 
low-frequency wake is shed as two separate structures. The vorticity from the end of the 
attached shear layer is shed into the lower half of the wake and forms a counter-rotating 
pair with previously shed vorticity. The negative vorticity closer to the cylinder is shed into 
the upper wake, and eventually forms a second counter-rotating pair during the next 
half-cycle. Thus, the vorticity forms two counter-rotating pairs per cycle, which is com- 
monly described as the 2P mode of shedding. However, the mode of vortex shedding in the 
high-frequency wake is clearly different. As the cylinder moves downwards, a single positive 
vortex is shed. In the next half-cycle, the shedding of a single negative vortex results in the 
classical Karman, or 2S, mode of shedding. At the transition from the low-frequency state to 
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Figure 3. The evolution of vortex structures during the downward stroke of the cylinder. The 
left-hand side column shows the low-frequency wake mode before transition (fe/f„ = 0-806), while the 
high-frequency wake mode after transition (fe/f0 = 0-869) is on the right. The position of the cylinder 

for each image is shown in the displacement inserts beneath the fields. 
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the high-frequency state, we observed not only a change in the timing of vortex shedding, 
but also a change in the mode of vortex shedding. 

The two modes of vortex shedding generate significantly different distributions of 
vorticity downstream of the cylinder. In the high-frequency wake, negative vorticity is found 
predominantly in the upper half of the wake, while the lower wake is dominated by positive 
vorticity. However, for the low-frequency wake, vorticity of both signs is found throughout 
the vertical extent of the wake. 

The wake states either side of transition can now be described in terms of both the lift 
force and the structure of the near-wake. For the low-frequency wake state, CL is small and 
(/»lie is large, while the structure of the near wake is characterized by the wake shown in 
Figure 2(b), with a positive initial vortex. Whilst for the high-frequency wake state CL is 
large, 0iift is small and the near-wake structure is characterized by the wake in Figure 2(c). 

3.2. TRANSITION 

In order to understand the nature of the transition between wake states we focused on 
frequencies close to transition. Representative images are shown in Figure 4. At each value 
offe/f0, the wake state at t = 0 is that of a stationary cylinder in a free stream. For t > 0 the 
cylinder oscillates at a constant frequency and the oscillating wake appears to be fully 
established in less than 10 oscillations. For a narrow band of frequencies close to transition, 
after many oscillations, self-excited changes were observed in the lift properties. We will 
now show that these changes correspond to a self-excited transition from the low-frequency 
state to the high-frequency state. 

The lift trace for a typical self-excited transition is shown in Figure 4(a). The correspond- 
ing instantaneous values of the amplitude and phase of the lift coefficient are shown in 
Figure 4(b). In this example, the transition begins after more than 150 oscillation cycles. For 
time less than 97 s the lift forces are consistent with the low-frequency state described 
previously: the lift coefficient is of small amplitude and the lift phase is large. Conversely, for 
times after 128 s the lift force is consistent with the high-frequency wake state. In-between 
these two states is a transient transition region where the lift force is not consistent with 
either state. The expanded time trace in Figure 4(c) shows the changing relationship 
between the lift and displacement within the transition region. 

It is expected that the self-excited transition in the magnitude and phase of the lift 
coefficient corresponds to a change in the structure of the near-wake. The wake patterns in 
both Figures 4(d) and (e) were acquired at the top of the oscillation cycle, at the times 
indicated on the lift trace. These images are representative of the wake structures either side 
of the self-excited transition. Despite the fact that the oscillation frequency is constant, these 
wake states are clearly different. The wake structure shown in Figure 4(d) corresponds to 
values of lift magnitude and phase that are consistent with the low-frequency state. The 
wake is shedding in the 2P mode and is clearly consistent with the steady-state low- 
frequency state, described in conjunction with Figure 2(b). Similarly, Figure 4(e) correlates 
well with the steady-state high-frequency wake mode of Figure 2(c). Thus, the wake states 
either side of the self-excited transition are consistent with the wake states at much lower 
and higher frequencies. 

For the self-excited transition, the instantaneous magnitude and phase of the lift coeffic- 
ient change smoothly from their low-frequency values to high-frequency values. However, 
within this transition region we observe that the change in 0iif, occurs slightly before the 
change in CL. After transition, there is some variation in the magnitude and phase of the lift 
coefficient, which was not observed at higher values of/e//„. During this variation, there is 
a clear inverse relationship between the instantaneous values of CL and </>iif,; however, once 
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Figure 4. The lift time trace (a) shows a self-excited transition occurring after more then 150 
oscillations cycles at a constant excitation frequency of/e//0 = 0-815. The corresponding variation in 
the instantaneous values of the lift phase and amplitude of the lift coefficient are shown in (b). The lift 
and displacement traces during the transition are shown in more detail in (c). The wake modes on 
either side of the self-excited transition are shown at t = 60 s corresponding to image (d), and at 

t = 270 s represented as image (e). Both images were acquired at the top of the oscillation cycle. 

the high-frequency state was established by a self-excited transition, a return to the 
low-frequency state was never observed. 

4. CONCLUSIONS 

In this paper we have described a transition between two wake states which exhibit 
distinctly different lift forces and wake modes. The interaction between the natural instabil- 
ity of the wake and the forced oscillation plays an important role and the flow properties 
depend strongly on fe/f0. At values offe/f, close to unity the changing relationship between 
these instabilities results in an abrupt change in the wake state. 
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Our investigation showed that changes in the lift force are intrinsically related to changes 
in the structure of the near-wake. As fe/f0 increased there was a transition from a small 
amplitude lift force, which was approximately out-of-phase with the cylinder oscillations, to 
a large amplitude in-phase lift force. Simultaneously, there was a change in the sign of the 
initial vortex and the mode of vortex shedding went from 2P to 2S. The change in the mode 
of vortex shedding appears to be related to the change in the timing of vortex formation, 
which is in turn related to the shift in the lift phase. For forced oscillations of the cylinder 
over a wide range of amplitudes, further consideration should be given to the occurrence of 
a change in timing of the initially shed vortex as a consistent requirement for the jump in the 
lift properties, as well as its relationship to the occurrence of, and transition between, the 2P 
and 2S modes. 

For a narrow band offe/f0, we observed a self-excited transition at a constant frequency of 
oscillation. Immediately following start-up, the lift force and wake mode conformed to the 
low-frequency wake state. After a number of oscillations, the lift force and wake mode 
changed smoothly until they were both consistent with the high-frequency wake state. The 
self-excited transition depends on the relative stability of three wake states: the low- and 
high-frequency wake states and also the wake state of the stationary cylinder before 
start-up. Therefore, the existence of this self-excited transition and the way in which it 
occurs may also depend on flow parameters such as A/D and Re. 
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Cylinders undergoing one- and two-degree-of-freedom (DoF) motions were studied. Since the 
forces on the cylinder fluctuate in both the streamwise and transverse direction, it is believed 
that such motions are more natural than transverse-only vibrations. A set of experiments was 
conducted in a water tunnel using both digital particle image velocimetry (DPIV) and force 
measurements. Several qualitative differences were noted, including a dramatic increase in 
phase coherence and the disappearance of the "2P" mode. It appears that the transverse motion 
sets the frequency of shedding, and the streamwise motion the relative phase therein. 

(6) 2001 Academic Press 

1. INTRODUCTION 

ALTHOUGH THE PHENOMENON of vortex-induced vibration of bluff bodies has been studied 
extensively, the vast majority of these studies have concentrated solely on transverse 
vibrations. Works by Feng (1968), Sarpkaya (1979), Khalak & Williamson (1999), and 
Gharib (1999), among many others, have highlighted the behavior of an elastically mounted 
cylinder free to vibrate in the transverse direction. Various response curves have been 
measured showing the amplitude, frequency, and phase of cylinders undergoing vortex- 
induced vibration. The effects of damping and mass ratio and Reynolds number have also 
been scrutinized. However, since the fluctuating forces responsible for these oscillations 
have unsteadiness in both lift and drag, the role of streamwise vibrations cannot be ignored. 
Although the lift fluctuation is generally quite a bit larger than the drag fluctuation, the 
resultant streamwise vibration must have some effect upon the wake. Previous studies that 
have looked at two-degree-of-freedom (2-DoF) mechanical systems have indicated that 
while the behavior is qualitatively similar, some interesting differences exist. For example, 
Gharib (1999) found that his 2-DoF free vibration cases were much less likely to exhibit 
lock-in behavior (where the wake locks to the natural frequency of the structure for some 
range of parameters). 

Forced vibration studies have been even more focused on 1-DoF vibrations. Two 
particular useful papers on 1-DoF forced motion are Bishop & Hassan (1964) and William- 
son & Roshko (1988). Bishop & Hassan demonstrated that a phase shift in the lift force 
occurs near when the vibrations are on either side of the Strouhal frequency of the 
stationary cylinder. The wake seems to aid the motion of the cylinder at some frequencies 
and oppose it at others. Williamson & Roshko demonstrated a connection between the 
motions in this region of parameter space with a change in wake shedding patterns. The 
wake was shown to change from the so-called "2S" (two single vortices per cycle) to the "2P" 
(two opposite-signed pairs of vortices per cycle) mode near the Strouhal frequency. This 
change in mode was associated with the change in lift phase. 

0889-9746/01/040533 + 09 $35.00/0 © 2001 Academic Press 
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Using the results from previous 1-DoF forced vibration studies, a series of 2-DoF forced 
vibration cases was analyzed to better understand what differences result from the addition 
of streamwise motion. Since it is believed that nature prefers a figure-eight-type motion, this 
study was undertaken to discern the effects of the addition of streamwise motion, and to see 
which effects a transverse-only experiment would miss. 

2. THEORY 

Since the goal of this work was to study natural vibrations, motion parameters were chosen 
accordingly. Most researchers report typical free-vibration amplitudes slightly above 0-5 
diameters — with cases of peak values in excess of 1 diameter being reported by some 
researchers — so, that value was chosen for the transverse vibration amplitude. Transverse 
frequencies were chosen from the Williamson & Roshko (1988) mode map, such that cases 
in the "2S" and "2P" regions were represented. (The corresponding positions on the 1-DoF 
parameter map are shown in Figure 1.) Streamwise frequency was fixed to be double the 
transverse frequency in order to generate the figure-eight patterns commonly observed. 
Streamwise amplitude was held at 0-1 diameters, or one-fifth of the transverse amplitude; 
this produced figure-eight patterns of approximately the correct aspect ratio. 

This left one main parameter — the relative phase between the streamwise and transverse 
motion. The phase is defined relative to the transverse motion in the following manner: for 
a given transverse motion sin (cot), phase <f> is such that the streamwise motion is 
sin (2cot + 4>). The phase value tends to drift in free-vibration cases (along with frequency 
and amplitude), but is usually in the range of 0 to -45°. Consequently, phases of 0 and 
—45° were chosen for examination. (Negative 45 degrees of phase results in a figure-eight 

pattern with the lobes bent slightly downstream.) 
It is worth noting that this represents a very small perturbation on the overall motion. 

As shown in Figure 2, if one were to plot the x-y position of the cylinder through time, 
motions with and without the streamwise vibration are virtually identical. Since the 
cylinder moves about 5 diameters downstream per cycle, it is not surprising that a 0-1 
diameter perturbation is nearly invisible on this plot. However, the effect on the wake is not 
so minuscule. 

0-8 1-0 1-2 1-4 
Period / Strouhal period 

1-6 

Figure 1. Transverse motion parameters plotted on the Williamson & Roshko (1988) mode map. 
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Figure 2. Trajectory of the cylinder in an X-Y plane. Although the transverse scale is greatly exaggerated, the 
effect of the streamwise perturbation is barely visible. 

3. EXPERIMENTAL SETUP 

The experiments were conducted in a low-speed water tunnel located at Caltech. Above the 
test-section, a two-independent-axes traversing system was mounted, which permitted 
arbitrary motions in the streamwise and transverse directions. Glass cylinders between 
2 and 2-5 cm were used; with a test-section approximately 45 cm wide and 58 cm deep, this 
gives about 5% blockage and an aspect ratio around 25:1. A schematic of this setup is 
shown in Figure 3. 

Data were taken with a digital particle image velocimetry (DPIV) system and a strain 
gage force balance. The DPIV system used a pulsed laser to illuminate the region around 
the cylinder and a video camera looking from underneath. To minimize parallax effects (i.e., 
the bottom of the cylinder obstructing the view near the plane of interest), the camera was 
placed approximately 6 m from the imaging plane. The strain gage balance was located 
between the cylinder and traverse and was used to verify lift and drag forces computed from 
the flow data. In order to keep the flow velocities low enough for the traverse and the DPIV 
system, freestream velocities of the order of 4-6 cm/s were used. This results in very low 
force values; consequently, an alternative force deduction method was also employed 
(Noca et al. 1997, 1999). 

4. RESULTS 

To facilitate the comparative effects of streamwise motion, the phase-averaged nondimen- 
sional vorticity fields are plotted in Figures 4 and 5. (Vorticity is scaled by the freestream 
velocity and the cylinder diameter.) In each figure, the data is taken at the same relative 
transverse phase, so that the only differences should arise from differences in the cylinder 
motion. Each column represents data taken at the same transverse frequency and each row, 
data at the same class of streamwise motion. In particular, Figure 4 is taken when the 
cylinder is near the upper extrema of motion, and Figure 5, when the cylinder is near the 
middle, during a falling stroke. It is worth pointing out here that the familiar "2S" and "2P" 
modes are recovered when only transverse motions are used. 

By plotting the various cases at constant phase, the apparent phase flipping of the wake is 
also quite evident. For example, in Figure 4, the vortex that is about to be shed is 
consistently negative (leeward) on the higher-frequency motions and consistently positive 
on the lower-frequency motions. 
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traverse Holder and 
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Figure 3. Schematic of the 2-DoF forced oscillation setup. 

The computed lift forces are plotted in Figure 6. For comparison, lift is plotted both with 
and without the added mass term. In a sense, the "wake" component of the force (total lift 
- added mass) represents the work that the wake is doing on the cylinder. As expected from 
work like Bishop & Hassan's (1964), the total lift forces are nearly 180° out-of-phase in the 
transverse-only case. However, the phase relationship is not so simple once the streamwise 
motions are added. 

5. DISCUSSION 

The effect of streamwise motion on the wake is quite noticeable. In the higher-frequency 
case (2S), there is a dramatic increase in phase coherence. The vorticity plots change from 
blobs of vorticity into compact circular vortices. This is most likely due to a regularization 
of the phase of the vortex shedding. In other words, the streamwise motion helps to control 
when, within the period, a vortex is shed. In the lower-frequency case (2P), an equally 
dramatic change occurs — the disappearance of the 2P mode. The pairing mode is quite 
evident in the 1-DoF case and the motion of the pair is easily tracked through time. 
However, with the addition of streamwise motion, the second vortex in the pair does not 
seem to form. It is believed that the primary vortex of the pair is produced in either case, but 
that the streamwise motion suppresses the formation of the secondary vortex. 

On the other hand, the effect of relative phase is more subtle. Figure 5 shows how the 
phase of the wake can be directly altered by the phase of the streamwise motion. For 
example in the higher-frequency case, at the same point in phase, the shed vortex is 
displaced by nearly a diameter in the streamwise direction. This again suggests that 
streamwise vibration affects the phase of shedding. The phase change is also reflected in the 
lift curves. Compare either the two dotted or solid lines in the lower two panels of Figure 6. 
The advance of the lift force relative to the cylinder motion is quite evident, caused solely by 
the change in the relative phase of the streamwise motion. This can have a large effect on the 
energy balance of the system. For example, similarly to Blackburn & Henderson (1999), the 
lower-frequency case showed a net power transfer from the wake, while the higher- 
frequency case was the opposite. When the streamwise motion is added, the lower- 
frequency case actually changes sign (transfers to the wake) at 0° phase and has more than 
50% higher power gain at -45° phase. It would seem, then, that the large transverse 
motion sets the frequency of shedding, but the streamwise motion affects the relative phase 
therein, and that the effects of relative phase are significant. 
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Figure 4. Comparison of the phase-averaged nondimensional vorticity in the wake of the oscillating cylinder. 
Cylinder approaching the upper extrema of motion (one-quarter period). Left column at higher frequency, right 
column at lower frequency (corresponding to the 2S/2P modes in the 1-DoF case), (a) No streamwise motion of the 

cylinder; (b) streamwise motion; <fr = 0; (c) streamwise motion, <j> = — 45°. 

Yet, it should not be surprising that streamwise motion of this magnitude should have 
a profound effect on the wake. If one looks at circulation production [see Morton (1984)], 
one sees that there are two primary sources of production for this class of problem: pressure 
gradients on the body and surface acceleration. Presuming the pressure gradients to change 
little between the various cases, one looks instead at the surface acceleration. Since the 
streamwise motion is at twice the frequency of the transverse motion, even though the 
motion amplitude is much smaller, the contribution to acceleration is quite comparable. 
Hence the contribution to circulation production from streamwise motion can be of the 
same order as that from transverse motion. This effect can be seen in the circulation of the 
shed vortices. For example, the 1-DoF cases resulted in vortices around 1-6 units of 
nondimensional circulation while their 2-DoF brethren were clustered around 2-1 units. 
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Figure 5. See Figure 4. Cylinder now near the mid-point, on the falling stroke (one-half period), (a) No 
streamwise motion of the cylinder; (b) streamwise motion; 0 = 0; (c) streamwise motion, <f> = — 45°. 

From a circulation production point of view, one cannot ignore the contribution from the 
streamwise motion. 

At this point, it is worth considering Figure 7. Plotted here are the positions of the 
attached vortices as a function of phase. The origin is always centered on the cylinder, so the 
indicated positions are not in laboratory coordinates. Starting with the simplest case, 
consider first Figure 7(a), which corresponds to the high-frequency, no-streamwise-motion 
case. This results in the 2S wake mode, which can be easily seen in the vortex tracks. (One 
vortex trajectory from each side per cycle.) When the streamwise motion is added to this 
transverse motion [Figure 7(b, c)], the picture is qualitatively similar, although the vortices 
form and shed faster (formation/shedding time is indicated by the length of the track). 
Looking at motions at lower frequency [Figure 7(e, f)], one is first struck by the longer 
residence time of the vortices. Recall that in either case, only one vortex is formed and shed 
from each side in each cycle. Nevertheless, the residence time is nearly twice as long at lower 
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Figure 6. Deduced lift forces for the cases shown in Figures 4 and 5. Total lift on the left column and the wake 
component of lift on the right. - - -, 2transverse forcing, higher frequency; —, 2P transverse forcing, lower frequency, 

(a) No streamwise motion; (b) streamwise motion; <p = 0; (c) streamwise motion, <f> = — 45°. 

frequency. Another interesting point is that formation happens on the opposite side of the 
cylinder. (A negative vortex resides on the upper side in the higher-frequency case and on 
the lower in the lower-frequency case.) This effect can be seen in either Figure 5 or 6 and is 
a result of the elongation of the vortical structure at lower frequency. The trajectory of the 
vortex pair in the 2P case is presented in Figure 7(d). The double tracks indicate the double 
vortices shed per cycle. It is worth pointing out that the first vortex formed on a given side 
appears to cross the axis and shed on the opposite side, pulling along the second vortex 
formed on the opposite side. This leads us to believe that the 2P mode is not so much 
a vortex pair (in the sense of a 2-D vortex ring) but more of a dominant primary vortex that 
pulls along the secondary vortex from the opposite side as it passes by. 
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Figure 7(a-f). Trajectory of attached vortices in the wake of the cylinder: —•—, upper; —A—, lower. 

6. CONCLUSIONS 

The importance of streamwise motion in forced vibration experiments has been presented 
here. The effect, seems primarily in the control of the phase of shedding. Changing the 
relative phase of shedding causes a corresponding change in the phase of the lift force. Since 
the energy transfer between the body and the wake is sensitive to the relative phase between 
the force and the body motion, the phase of the streamwise motion can control even the sign 
of energy transfer (wake driving the body or vice versa). 

The addition of streamwise motion also resulted in qualitative changes in the wake. 
Perhaps the most dramatic is the disappearance of the pairing mode. When only a trans- 
verse vibration is used, the 2P mode is observed in our experiment; however, the wake 
reverts to shedding single vortices once this relatively small streamwise component is added. 
Since unconstrained systems will tend toward 2-DoF motions, it is hoped that this 
experiment has shed some light on the significance of streamwise vibration. It would seem 
that the effect is much more pronounced than the motion amplitude would imply. 
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With time recording Digital-Particle-Image Velocimetry and spatio-temporal reconstruction 
technique, we obtained detailed quantitative results of the evolution of the velocity and vorticity 
field in the wake of axisymmetric bluff bodies—a sphere and an axially oriented cylinder with 
an elliptic nose and a blunt base. Experiments were carried out for Reynolds numbers of 
Re = 500, 700 and 1000 in the transition range from "regular" to "irregular" shedding. DPIV- 
recordings in radial cross-sections at several distances downstream of the bodies allowed us to 
reconstruct the dynamics of the streamwise vorticity over a large number of shedding cycles. 
Our results prove that the wake in this regime consists of a double-sided chain of oppositely 
oriented hairpin vortices. In addition, the results show a well-defined low-frequency modula- 
tion of the vortex shedding, with a distinct peak in the frequency spectrum at a Strouhal number 
of about Sr « 0-05 (in case of the sphere). The wake pattern in this "irregular" shedding regime 
typically exhibits periodic packets of 3-4 "regular" shedding cycles which are interrupted by 
phases with less action. The results indicate the coexistence of a long-wave instability of 
axisymmetric wakes against helical Waves in addition to the primary instability causing the 
vortex shedding process. © 2001 Academic Press 

1. INTRODUCTION 

THE PRESENT STUDY WAS UNDERTAKEN with the objective of a detailed quantitative analysis of 
the evolution of the flow field in the wake of axisymmetric bluff bodies like spheres and 
spheroids. While much experimental data exist for the wake of nominally two-dimensional 
bodies like the cylinder wake, considerably less has been reported on wake flows of 
axisymmetric bodies, although there is certainly the same strong physical and technical 
interest. Practical examples are the wake behind bubbles, drops and particles or projectiles 
and rockets. In comparison to the cylinder wake, the wake of axisymmetric bodies—from 
which the sphere wake is the most prominent—exhibits grave differences in the shape and 
dynamics of the vortices being shed. The wake structures are basically three dimensional 
and highly unsteady, which makes any measurements and interpretations difficult. To the 
best of the author's knowledge, any experiments which could provide detailed instan- 
taneous flow field data in such type of wakes are still lacking. In addition, it is only recently 
that the progressively growing computing power has enabled the first numerical simula- 
tions of the unsteady wake flow of axisymmetric bodies (Johnson & Patel 1999; Mittal 1999; 
Lee 2000). Therefore, most of today's knowledge about the vortical structures contained in 
the wake is still based mainly on earlier flow visualisation studies (Magarvay & Bishop 
1961; Achenbach 1974; Nakamura 1976; Sakamoto & Haniu 1990). For the sphere wake, 
these experiments revealed several stages in the transition of the wake from a steady 
axisymmetric wake to unsteady irregular vortex shedding. Up to Reynolds numbers of 130, 
the wake is stationary and forms an axisymmetric recirculating eddy. Beyond that, a weak 
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periodic wave-like wake with a long period was observed behind the axisymmetric eddy. In 
the range 210 < Re < 270, the wake evolves into an attached hairpin-like vortex, with its 
legs forming a pair of streamwise vortex filaments pointing downstream. As this wake 
pattern appears, the wake still seems to be stationary as reported by Nakamura (1976). For 
higher Reynolds numbers, up to Re = 420, the flow visualisation experiments revealed 
a shedding of hairpin-like vortex structures. The wake appears as a chain of hairpin vortices 
with the heads pointing always to the same side in the same axial plane (Achenbach 1974). 
This pattern becomes irregular at increased Reynolds numbers. 

Recent numerical simulations of the sphere wake flow by Johnson & Patel (1999) 
demonstrated that most of the flow visualisation experiments have overlooked vortex 
structures in the wake which are induced within the fluid and are not connected with the 
base of the bluff body. These occur as oppositely oriented hairpin vortices in-between the 
one-sided chain of hairpin vortices seen in the flow pictures from Nakamura (1976) and 
other authors. This discrepancy highlights that detailed chronological flow field measure- 
ments are necessary in order to provide the velocity and vorticity information for the entire 
wake. The objective of the present paper is to fill this gap in experimental knowledge by 
detailed analysis of the structure and dynamics of the vortices in the wake. Therefore, we 
applied chronological high-speed DPIV-technique to capture the temporal evolution of the 
flow field in radial cross-sections downstream of the axisymmetric bluff bodies. The 
time-series of DPIV results are used to analyze the vortex dynamics with the aid of 
spatio-temporal reconstruction method. The most relevant studies with respect to our work 
are the numerical simulations done by Tomboulides & Orszag (2000), Mittal (1999), 
Johnson & Patel (1999) and, most recently, the work from Lee (2000) which was published 
during the completion of this article. Of particular interest in Lee's paper is his observation 
of a low-frequency fluctuation, in addition to the primary vortex shedding which is one 
particular focus of our work. 

2. EXPERIMENTAL METHODS AND ARRANGEMENT 

The test-objects chosen in our study were a solid sphere and a cylindrical rod with an 
elliptical nose and a sharp trailing edge (Figure 1) which is aligned with its axis along the 
flow axis. In contrast to the sphere, the cylinder has a defined separation edge and the 
boundary layer thickness can be controlled by the length. This allows us to study the effect 
of boundary layer thickness on the stability of the wake. The experiments were carried out 
in a vertical water channel shown in Figure 1. The transparent test-section has a cross- 
section of 10 x 10 cm2 and is 1-2 m high. The bluff bodies with a diameter of 3 cm were held 
by a thin hollow rod of 2 mm diameter in the centre of the channel. To reduce its effect on 
the flow around the body, we sucked the boundary layer fluid away through tiny holes 
along the rod. Small tracer particles (Vestosint, mean diameter of 30 um, p = 1-02 g/cm3) 
were added to the fluid upstream in the water basin and were mixed homogeneously. 

The DPIV set-up was arranged to measure the velocity field in a horizontal cross-section, 
downstream of the body in order to obtain the distribution of streamwise vorticity in that 
plane. The beam of a continuous Ar+ laser was expanded with a rotating polygonal mirror 
to form an intense virtual light-sheet in a horizontal cross-section of the channel. A digital 
high-speed video camera (resolution: 512 x 512 pixels; frame rate: 1000 Hz) was used to 
record the flow, synchronized with the polygonal mirror so that each frame corresponds to 
a single sweep of the laser beam. The recording rate was increased with the Reynolds 
number of the flow beginning from 60 Hz at Re = 300, 100 Hz at Re = 500, 200 Hz at 
Re = 700 and 500 Hz at Re = 1000. Within the horizontal light-sheet plane {y-z plane), the 
in-plane velocity components were obtained from cross-correlation of successive image 
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Figure 1. Experimental set-up and shape of the two axisymmetric bluff bodies used in this study. 

pairs in small interrogation windows. The results represent a two-dimensional data set, in 
the form of velocity vectors on a grid with 31x31 equidistant nodes over a square cross- 
section area of 5 x 5 cm2. The streamwise vorticity component was determined out of the 
velocity field by calculating the gradients in the 3 x 3 neighbourhood of each node using 
central difference schemes. 

In all experiments, the measurement plane was located at x = 3 diameters downstream of 
the body base plane. At this position outside of the attached part of the wake, the vortex 
structures have not yet deformed by self-induction and are still mainly oriented in the 
streamwise direction while they are convected downstream; cf. the results from Tomboulides 
& Orszag (2000), Johnson & Patel (1999) and Mittal (1999). This enables to reconstruct the 
dominant part of the vortex structures by spatio-temporal display of the chronological 
DPIV results in the radial cross-sections. 

3. RESULTS 

Before we discuss the results by means of the spatio-temporal reconstruction images, an 
example of the dynamics of the bluff-body wake is first shown in a sequence of DPIV results 
in the following section. 

3.1. SPHERE WAKE AT Re = 400 

Figure 2 gives an example of the instantaneous flow field in the radial cross-section at x = 3 
diameters downstream of the sphere for a Reynolds number of 400. The flow field shows 
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Figure 2. Example of DPI V results in the wake of a sphere (Re = 400) in a cross-section at x/D = 3: 
(a) velocity field and sectional streamlines, integrated from the velocity field; (b) lines of constant 
streamwise vorticity with constant increment (continuous lines indicate positive rotation, dashed lines 

indicate negative rotation), (c) Definition of the angular orientation of the wake. 
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Figure 3. Evolution of the streamwise vorticity distribution in the wake of a sphere (Re = 400) in 
a cross-section at x/D = 3 over a complete shedding cycle; the mark "p" indicates the primary vortex 

pair, "s" the secondary pair. 

a pair of streamwise vortices in the cross-section of the wake, which represent cuts through 
the legs of the vortex loop being shed into the wake. Note that the vortex pair is not located 
at the centre of the sphere-wake but offset to the lower left side. A strong radial cross-flow is 
induced between the vortices. The induced flow field exhibits a symmetry of the wake about 
a plane passing through the wake centreline, tilted about an angle of 45°; the vortex centres 
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of the pair are mirror-symmetric to this plane. The orientation of the vortex pair (which is 
referred to as the "wake orientation") is defined by the angle a of the connection line 
between the vortex centres, which we determine from the extrema of streamwise vorticity in 
our data. The temporal signal of this angle is used to display the angular stability of wake 
orientation in different stages of wake transition. In addition, the average value of positive 
streamwise vorticity and its variation over time is used as a first approximation of the 
variation of the strength of the vortices. An additional value of interest is the radial velocity 
component at the centreline. 

The dynamics of the wake is shown in Figure 3 by a sequence of DPIV results over one 
single shedding cycle. During the cycle, the vortex pair (a "pair" is characterized by two 
regions with concentrated streamwise vorticity of opposite sign which are symmetrically 
positioned at opposite sides of the plane of symmetry) varies in strength and size and moves 
along the plane of symmetry. Both parts of the pair remain in their same angular relation 
and strength relative to each other, over the entire shedding cycle. Therefore, the angular 
orientation is maintained at a fixed plane of symmetry at all times during the shedding 
process, which is an intrinsic feature of the sphere wake at this range of Reynolds numbers. 
From Figure 3(a) to 3(d) the primary vortex pair, which is offset outside the centreline to one 
side of the sphere, grows in strength and size. Then the vortex pair starts to move towards 
the centreline, loses its strength, shrinks (both centres approach each other), until it has 
finally diminished in Figure 3(i). Meanwhile, one can see the generation of a secondary 
vorticity pair at the outer shoulders of the primary vortex pair with counter sign of rotation 
[Figures 3(f,g)]. This secondary pair shows the same trend over time as the primary pair, as 
it grows in strength [Figures 3(g,h)], starts to move towards the centre of the wake [Figures 
3(h,i)], shrinks again and finally diminishes [Figures 3(j,k)]. Now the cycle is finished and 
the next one starts at Figure 3(k) with the appearance of a new primary vortex pair at the left 
side of the sphere, similar as in Figures 3(a,b). 

The contours of regions of concentrated streamwise vorticity of the secondary vortex pair 
displayed in Figure 3 show that this pair never reaches the same size and strength compared 
to that of the primary pair. This, together with the observation that the secondary pair is 
generated at the outer shoulders of the primary vortex pair, suggests that the vorticity of the 
secondary pair is not being shed from the sphere but results from the roll-up of the shear 
layer between the outer flow and the strong swirling flow around the vortex tails of the 
primary vortex pair. Comparing our data with the results from Johnson & Patel (1999) let 
us conclude that the secondary pair reflects an induced hairpin vortex, while the primary 
pair reflects a shed hairpin vortex. The induced vortex structures—as they describe—are 
generated by the interaction of the near wake flow and the outer flow and are based on 
a different mechanism as the shed hairpin. Unfortunately, the limited information given in 
their paper does not allow a direct comparison of the streamwise vorticity distribution. 
Nevertheless, one can see from figure 29 in their article that the streamwise vorticity within 
the shed hairpin vortices is higher than in the induced hairpin vortices which agrees with 
our observation, too. Note also that the primary vortex pairs always evolves on the same 
side of the sphere, which means that the vortices shed only from one side in our experiments, 
as in the numerical results. 

The spatio-temporal reconstruction of the vorticity field is in principle created from 
a time sequence as given in Figure 3, using the complete data set with a much higher 
temporal resolution and a total recording period of over several tens of shedding cycles. The 
vorticity values in the horizontal plane were taken from the results and stacked plane by 
plane vertically in a data cube over the complete sequence of DPIV results in the recorded 
period. The resulting data matrix can be displayed as an isosurface of constant streamwise 
vorticity which gives an image of the spatio-temporal evolution of the component of 
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streamwise vorticity at a stationary location within the wake. The following figures display 
the resulting images of the isosurfaces of streamwise vorticity from two orthogonal viewing 
sides (front view and side view, which allow recognition of the orientation of the vortex 
structures in the plane of symmetry) together with the temporal evolution of the radial 
velocity at the centreline, the phase angle 6, the average value of positive axial vorticity and 
its power spectrum. The time unit is made dimensionless with the free-stream velocity and 
the diameter of the body. 

3.2. CYLINDER WAKE AND SPHERE WAKE AT Re = 500 

Figures 4 and 5 show the results for the cylinder and the sphere wake at a Reynolds number 
of 500. Note, that the isosurfaces are rotated such that the front view is along the plane of 
symmetry. The isosurfaces illustrate the periodic alternate downwash of oppositely oriented 
vortex pairs in the wake of the bodies over a period of about 14-15 cycles taking 80 time 
units. A comparison of the wake of the sphere (Figure 5) with the wake of the cylinder 
(Figure 4) shows that the boundary layer thickness has a strong influence on the stability 
and coherence of the vortex shedding. The sphere wake exhibits already the typical slight 
random variations of the orientation of the vortices and some "irregularity" in the shedding 
cycle. In comparison, the wake of the cylinder is approximately perfect periodic in time, with 
a stable orientation of the vortices (compare the phase angle plot in Figure 4). The strong 
coherence of the cycles in Figure 4 demonstrates the near periodic creation and discharge of 
the vortices which is similarly observed for the sphere wake at Reynolds numbers of less 
than about 420. 

A typical pattern of a single cycle appears in the front view as a vertically stretched 
lambda-like vortex pair (the primary vortex pair marked "p") with a second shorter vortex 
pair (the secondary vortex pair marked "s") lying on top on its shoulders. Such a pattern 
would come out from spatio-temporal reconstruction of the cycle shown in Figure 3. The 
radial distance of the vortices of the primary pair decreases from bottom to top, giving the 
lambda-like shape. This corresponds—in the temporal evolution—to the convergence and 
shrinking of the vortex pair shown in Figures 3(d-h). As already concluded above from 
comparison of our results with the figures published by Johnson & Patel (1999) the vortex 
pairs represent parts of the actual three-dimensional hairpin-like vortices, namely the 
streamwise oriented legs. 

Overall, our results clearly confirm a one-sided chain of the primary vortices in the wake 
which are interconnected with counter-oriented vortices of seemingly lower strength. The 
side views of the isosurfaces show that the induced hairpin vortices always point to the 
opposite side of the shed hairpin vortices and are of shorter vertical extension than the shed 
hairpin vortices. This is also well displayed in the evolution of the phase angle which we 
determined from the orientation of the dominant vortex pair. The moments at which the 
phase angle jumps about a value of % characterize the change of the dominant vortex pair in 
the cross-section from the shed hairpin vortex to the induced one and vice versa. The period 
in which the primary vortex pair dominates the flow in one cycle is considerably longer in 
the diagram of the phase angle than the period in which the secondary pair occurs. In 
addition, the evolution of the average value of positive streamwise vorticity—chosen as 
a first approximation to estimate the circulation of the hairpin-like vortices—shows that the 
vorticity in the phase of a primary vortex pair exceed that in the phase of a secondary vortex 
pair about a factor of 3-4 which indicates a low circulation of the induced hairpin vortices 
compared to the shed vortices. 

An interesting feature can be deduced from the variation of the strength of the vortices 
over time (or the variation of the radial velocity at the centreline) in Figure 4. There is 
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a slight low-frequency modulation of the overall strength of the vortices which appears as 
a small peak in the spectrum at Sr = 0-015, in addition to the dominant peak at Sr = 0-168 
representing the "natural" vortex shedding. The effect of this modulation is however so 
small that it does not change the overall pattern of vortex dynamics. In the sphere wake, we 
can see a similar low-frequency modulation of the strength of the vortices (Figure 5). It can 
be recognized in the evolution of the vorticity and its power-spectrum but also in the 
spatio-temporal reconstruction image. The plot of streamwise vorticity clearly displays 
a sinusoidal low-frequency modulation of the strength of the vortices which show peak 
vorticity values at t « 10, 30, 50 and 70. The power spectrum shows a peak at a Strouhal- 
number of Sr = 0-05 corresponding to this modulation. The second peak at Sr = 0-178 
belongs to the vortex shedding and falls well within the range of values reported by 
Sakamoto & Haniu (1990) and Tomboulides & Orszag (2000). 

The variation of the strength of the vortices leads to a variation of the shedding period 
and the inclination angle of the loops against the vertical. The inclination of the vortex pair 
is strictly coupled to the strength of the vortices since it is a result of the self-induction effect 
which scales with the circulation of the loops. It is well seen in the isosurfaces that in phases 
of high circulation of the loops, the vertical distances between successive vortex loops are 
shorter and the loops are more inclined against the vertical. In phases of less vorticity action 
the induced hairpin vortices reduce in size and strength in the same way as the shed hairpin 
vortices and sometimes even disappear. The mark "A" in Figure 5 indicates an interval 
40 < t < 45 where shedding is completely suppressed. The isosurface displays a temporarily 
stable vortex pair, similar as it is observed in form of the "double-threaded" wake at 
Re < 290. As a result of the variation of the shedding period the power spectrum reveals 
a double-peak scenario; the peak at Sr = 0-225 corresponds to the typical shedding period 
at high vorticity action around the times t « 10, 30, 50 and 70, while the peak at Sr = 0-178 
corresponds to the "natural" shedding phases in between. 

3.3. CYLINDER WAKE AND SPHERE WAKE AT Re = 700 

For the cylinder wake, the discovered low-frequency instability of the wake and the 
resulting effect on the vortex structures becomes dominant at Re = 700, shown in Figure 6. 
The vortices seem to be shed in "pockets" of 3-4 strong hairpin vortices, interrupted by 
shedding phases with weaker hairpin vortices. The strong phases are marked as "A", "B" 
and "C" in Figure 6. The beginning of such a phase is coupled with a steep increase of the 
vorticity of the first hairpin and a flat decrease of the peak values for the following shedding 
cycles. The temporal profile of the mean vorticity shows a sawtooth-like envelope. The 
strength and size of the induced hairpin vortices are strictly coupled to that of the shed 
hairpin vortices, i.e., when the shed hairpin vortex is of higher circulation then it induces 
a stronger hairpin and vice versa. Similar to the sphere wake one can observe a faster 
shedding in phases of higher vorticity and a higher inclination of the loops to the vertical. 
The sawtooth-like envelope of variation of vorticity and the varying shedding frequency 
indicate a non-linear interaction of the low-frequency modulation and the "natural" 
shedding process. 

The power-spectrum reveals—similarly as for the sphere—a double-peak scenario corre- 
sponding to the different phases of the shedding; the peak at Sr = 0192 corresponds to the 
typical shedding period with high vorticity action around the times t « 20, 50, 80 in Figure 6, 
while the peak at Sr = 0-154 corresponds to the "natural" shedding phases in-between. One 
additional important aspect of the results in Figure 6 is that the angular orientation of the 
wake seemingly remains stable (except for a very small rotational drift of the entire wake in 
one direction, which results in a total rotation of 30° over the complete process with 100 
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time-units). The existence of the low-frequency fluctuation is therefore seemingly not 
necessarily coupled to a rotation of the detachment point of the vortex loop from the base of 
the body as speculated by Lee (2000). Rather, our results indicate that the low-frequency 
modulation is a generic instability of axisymmetric wakes to long-wavelength waves from 
which the helical-type waves are the most likely, according to the instability analysis by 
Natarjan & Acrivos (1993). 

Figure 7 shows the results for the sphere wake at Re = 700. In comparison to the cylinder 
wake, the planar symmetry seems already to be lost and a more irregular pattern of vortex 
shedding is seen. The power spectrum of the vorticity shows the dominant peak at Sr = 0-05 
which proofs that the low-frequency modulation is still present. The second peak at 
Sr = 0-205 corresponds to the vortex shedding. One can best see, similarly to the cylinder 
wake, the low-frequency modulation from the vorticity and velocity profile. In phases with 
a more stable orientation of the wake, as for example in the period 40 < t < 60, the 
isosurfaces show a similar pattern as in the cylinder wake at Re = 700. Between the stable 
phases one can observe a twisting or rotation of the whole wake structure, which we have 
marked with "A-D" in Figure 7. These phases seem to be coupled with a steep increase of 
the vorticity; the vorticity peak at t = 22 initiates phase B, the peak at t = 58 initiates phase 
C and the peak at t = 78 initiates phase D. The peak at r = 40 is the only one which 
does not immediately lead to a twisting of the wake. It lets us conclude that the sphere 
wake at higher Reynolds numbers reacts to the long-wavelength modulation with a rota- 
tion or twisting of the wake, unlike the cylinder wake which still remains stable at Re = 700. 
Note, that the vortex loops themselves are also twisted in phases A, B and D, which 
means that the rotation continues over the shedding process, sometimes even over periods 
of 2-3 cycles. 

The power spectrum of the vorticity signal does not show anymore the typical double- 
peak scenario in the shedding regime but only a broader single peak at Sr = 0-205. 
However, one can still see a variation of the shedding frequency in the profile of the phase 
angle comparing the times at which the phase angle jumps about %. We believe that possibly 
the vorticity signal—especially during the wake rotation—does not reflect anymore 
a proper value to identify the shedding frequency; this might be the reason that an actual 
double-peak scenario has converged to a single broader peak in the power spectrum. 
A similar transition of the overall pattern as observed herein for the sphere at Re = 700 is 
also observed for the cylinder wake at a higher Reynolds number of Re = 1000, for which 
results cannot be shown here due to space limits. 

4. DISCUSSION AND CONCLUSION 

In general, the wake transition process shows similar patterns for the cylinder and the 
sphere wake, except the fact that, for the cylinder wake, the transition is shifted to higher 
Reynolds numbers. The planar symmetry of the sphere wake at Re = 400 is lost at Re = 500 
in our experiments. For the cylinder wake this regime extends to at least Re = 500. First, 
slight fluctuations of the phase angle occur at Re = 700, which is comparable to the sphere 
wake at about Re = 500. This suggests that the boundary-layer thickness plays an addi- 
tional role in the instability of axisymmetric wakes in the way that an increased boundary 
layer thickness seemingly stabilizes the wake orientation. DPIV measurements in the 
cross-section downstream of the sphere and the cylinder show that the overall shape of the 
generated vortices resembles hairpin-like structures. The legs are represented by the mea- 
sured centres of streamwise vorticity in the cross-section. The reconstructed isosurfaces 
display a chain of hairpin vortices which consists of an alternate arrangement of a shed 
hairpin vortex followed by an induced, oppositely oriented hairpin vortex. A similar result is 



VORTEX DYNAMICS IN AXISYMMETRIC WAKES 553 

documented in recent numerical results of sphere wake flow at Re = 300 by Johnson 
& Patel (1999). A lower strength of the induced hairpins is observed here, too. 

A possible explanation of the planar symmetry and its loss at higher Reynolds numbers 
will be discussed in the following from the interaction of helical waves in axisymmetric 
wakes. Natarajan & Acrivos (1993) found, via a global stability analysis, that axisymmetric 
wake flows are most unstable against helical waves. The first instability in the sphere wake 
appears for a nonfluctuating helical wave with an azimuthal wavenumber of k = 1 (this 
means that the wavelength fits once within the circumference), i.e., the wake becomes 
asymmetric but remains steady. Beyond this first critical Reynolds number, the flow 
becomes unstable to fluctuating helical waves with k = 1, and the flow becomes unsteady. It 
is obvious from the planar symmetry of the wake in the range 290 < Re < 420 that two 
counter-rotating helical waves must exist simultaneously, which additionally must have the 
same amplitude and phase velocity. If so, the counter-rotating waves leads to a perfect 
planar oscillations of the wake which can be proved by simple additive superposition of 
both waves. However, if this system is destabilized, one of these helical waves would 
dominate, which would lead to a helical deformation of the wake. Our results suggest that 
this is what happens for higher Reynolds numbers, in which those phases with wake 
rotation are initiated by the low-frequency modulation of the wake as discussed in what 
follows. 

Most interestingly in our experiments, we could identify a previously overlooked low- 
frequency modulation of the wake; the vortex patterns show a long-wavelength periodic 
variation of the circulation and shedding frequency of the hairpin vortices. The hairpin 
vortices with a higher circulation appear periodically in packets of 3-4 vortices which are 
more inclined against the vertical and shed more rapid in comparison to the phases of 
"natural" vortex shedding at frequencies which agree with those reported in earlier studies 
[see, e.g., Sakamoto & Haniu (1990)]. As a result, the shedding regime appears in the power 
spectrum of the vorticity signal as a double-peak scenario. In addition, a third peak 
indicates the low-frequency modulation at a Strouhal number of Sr = 0-05 in the sphere 
wake and Sr = 0-03 in the cylinder wake. It is assumed that the low-frequency modulation is 
again linked to helical-type waves with an azimuthal wave-number of k = 1 according to 
the results from Natarajan & Acrivos (1993). This demonstrates that there is an interaction 
of instabilities at different characteristic frequencies which was not observed in experiments 
before. 

While this low-frequency modulation seems to destabilize the planar symmetry of the 
sphere wake at Re = 500, it does not have a significant effect on the planar symmetry in the 
wake of the cylinder up to Re = 700. This suggests that the long-wave instability appears 
again as a pair of counter-rotating helical waves of the same amplitude and phase velocity. 
This instability exists over the entire transition range of the cylinder flow with a Strouhal 
number of Sr = 0-015 at Re = 500, Sr = 0-028 at Re = 700, and Sr = 0-03 at Re = 1000. At 
the higher Reynolds number, both the cylinder and the sphere wake show that the 
symmetry is not completely lost but reappears periodically in phases with regular shedding 
and a seemingly stable orientation, over 3-4 shedding cycles. This lets us conclude that the 
loss of planar symmetry in axisymmetric wakes is the primary consequence of the imbalance 
of the long-wave helical waves. 
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In this work, we discover the existence of multiple modes of vortex-induced vibration of a tethered 
sphere in a free stream. In addition to the first two modes, defined as Modes I and II, and found 
originally by Govardhan & Williamson (1997), we find the existence of an unexpected Mode III at 
much higher normalized velocities (U*). This third mode, involving large-amplitude and remark- 
ably periodic vibrations, was discovered by changing our focus from "light", or buoyant, tethered 
spheres in a water facility (where relative density, m* < 1), to "heavy" spheres in wind tunnel 
facilities (where m* $> 1). In this manner, we are able to achieve a very wide range of normalized 
velocities, U* = 0 - 300, and investigate a wide range of masses, m* = 0-1 - 1000. The first two 
modes might be identified as analogies to the 2S and 2P modes for an excited cylinder 
(Williamson & Roshko 1988), and can be associated with a lock-in of the vortex formation 
frequency with the natural frequency. These modes of sphere dynamics occur within the velocity 
regime U* ~ 5 - 10. However, our Mode III occurs over a broad range of high velocity 
(U* ~ 20 - 40), where the body dynamics cannot be synchronised with the principal vortex 
formation frequency. At extremely high velocities (U* > 100), we find yet another mode of 
vibration that persists to at least 17* > 300, which we define as Mode IV, but in this case the 
unsteady oscillations are characterized by intermittent bursts of vibration. Regarding the 
periodic Mode III, it cannot be explained by classical "lock-in" of the principal vortex shedding 
and body motion, and one is left with a tantalizing question: What causes this unexpected 
periodic high-speed mode of vortex-induced vibration? © 2001 Academic Press 

1. INTRODUCTION 

THE CASE of a tethered sphere vibrating in a fluid flow is perhaps one of the most basic 
fluid-structure interactions that one can imagine. By a wide variation of the mass of the 
sphere, one can consider the case of an underwater tethered buoyant body, or indeed 
a "heavy" sphere in air flow, acting as a pendulum, as examples of essentially the same 
general problem. It is quite surprising that, despite the fact that tethered bodies are quite 
ubiquitous in engineering, very few investigations have shown whether a tethered sphere 
will oscillate in a steady fluid flow or current. It was demonstrated by Williamson 
& Govardhan (1997) and Govardhan & Williamson (1997), that such a structure will indeed 
vibrate vigorously at large amplitude, and these oscillations have a direct impact on the 
tether angle and drag coefficient. Gross errors in predictions of mean response of a tethered 
structure will ensue unless one takes account of their tendency to vibrate. Other studies in 
the literature are concerned with the action of surface waves on tethered buoyant structures, 
and they employ empirically-determined drag and inertia coefficients to predict sphere 
dynamics (Harleman & Shapiro 1961; Shi-Igai & Kono 1969; Ogihara 1980). 

In this work, we define a sphere as either "light" or "heavy", depending on the value of the 
relative density or mass ratio, m* (where m* = mass of sphere/mass of displaced fluid): 

"Light" sphere:   m* < 1; 

"Heavy" sphere:   m* > 1. 

0889-9746/01/040555 + 09 $35.00/0 © 2001 Academic Press 
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Figure 1. (a) Schematic of the experimental arrangement for the "light" and "heavy" tethered sphere, (b) Typical 
trajectories of sphere motion for "light" spheres. 

Most of the studies in Govardhan & Williamson (1997) involved "light" spheres, where the 
tethered bodies in our Water Channel facility were buoyant, and typical trajectories were 
found to be of figure-of-eight or crescent topologies, as shown in Figure 1. The oscillation 
amplitudes transverse to the fluid flow (^-direction) are always found to be much larger than 
streamwise motions (x-direction), especially as the spheres become "heavy". It was shown in 
Williamson & Govardhan (1997) that the normalized amplitude (4* = A/D = ampli- 
tude/diameter) can be suitably collapsed using the normalized velocity U* = U/fND (where 
U is the free-stream velocity, fN the natural frequency in the fluid, and D the diameter), as 
could be expected on dimensional grounds. In the case of the vortex-induced vibration of 
a cylinder, such response plots show a resonance when the vortex shedding frequency fv is 
close to the natural frequency of the structure fN, which corresponds to a velocity 
U* ~ 1/S x 5, where S is the Strouhal number. The response of the sphere, in Figure 2, 
shows just such a resonance at U* x, 6, which we define as the Mode I response, and this 
corresponds to the vortex formation frequency lying close to the (calculated) natural 
frequency of the tethered body. 

At higher velocities (U* > 8), a Mode II periodic vibration appears, with large amplitudes 
close to one diameter, and in the case of the low mass, m* = 0-8, the extent of the 
synchronization regime (the range in U* over which large vibrations are observed) seems to 
persist to the limits of our facility, i.e. to at least U*>15. It is known that increasing the 
mass of a vibrating structure will decrease the sychronization regime; in the case of the 
vibrating cylinder, predictions of this effect can be made (Govardhan & Williamson 2000). 
In the case of sphere dynamics, by increasing the mass from m* = 0-8 to 2-8, the end of the 
synchronization regime reduces to U* = 11, as shown in Figure 2, and thus can be reached 
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Figure 2  Amplitude response (A*) versus normalized flow velocity ([/*), showing Modes I and II sphere 
oscillations: (a) m* = 0-8, (b) m* = 2-8, (c) m* = 28. 
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within the flow speed limits of the water facility. It was naturally felt that any further 
increase in fluid velocity, beyond the limit of the Mode II regime (in the latter case, beyond 
U* = 11), would yield negligible amplitudes, and exhibit no further modes of response. 
However, one particular "strange" result from the Water Channel for m* = 28 showed an 
upsurge in the amplitude close to the limits of the facility flow speed, and beyond the Mode 
II regime, as shown in Figure 2. Our assumption for some months was that this was 
a problem with possible flow turbulence, as the channel was operating at "flat out" speed. In 
order to shed light on this problem, we decided to shift our efforts to wind tunnels, and 
purposely increase the mass ratio, m*, beyond the maximum value possible in a water 
facility, and to enable much higher flow speeds to be studied, thereby permitting a much 
larger range of normalized velocities, U*. 

This paper presents the principal results from the research performed using the wind 
tunnels. We have been able to use large mass ratios, from m* = 80 up to 940, and we have 
achieved a very wide range of normalized velocity, U* = 0-300. We shall see that not only 
was the upsurge in amplitude, mentioned above, a "real" effect, but that it is part of a wide 
regime of highly periodic large-amplitude vibrations. This is completely unexpected, be- 
cause, at these high speeds, the vortex formation frequency is far above the vibration 
frequency, such that several cycles of vortex structures will be formed over a single period of 
body motion, and therefore the classical "lock-in" cannot occur. At higher velocities, 
beyond U* = 100, we discover yet another mode of response, but in this case the oscilla- 
tions are highly unsteady, and they occur in intermittent bursts. 

2. EXPERIMENTAL DETAILS 

The experiments described in the Introduction, which utilized the Cornell-ONR Water 
Channel, were conducted as part of Govardhan & Williamson (1997, 2000) and are 
described in detail therein. The wind tunnel experiments here involve the use of 
a 12 in x 12 in (test-section) wind tunnel, and an 18 in x 18 in tunnel (lin = 25-4 mm). 
Typical spheres in this study had diameters of 6-9 and 7-6 cm, and had masses of 16-5 and 
259-1 g, giving mass ratios of 80 and 940, and were tethered to the roof of the tunnel using 
fine polymer wires, of 0-001 in diameter. Displacement was measured using an optical 
biaxial displacement transducer, which was oriented upwards from beneath the wind tunnel 
lucite floor. We shall define the normalized amplitude of the transverse (y) oscillations, 

unless otherwise noted, as A* = ^2yims/D, which, for purely sinusoidal oscillations, is 
simply A* = A/D. 

3. DISCOVERY OF MODE "III": A HIGH-VELOCITY RESPONSE MODE 

By using the wind tunnels, we are able to explore the sphere dynamics at high normalized 
velocities, beyond the regimes of Modes I and II, using a sphere of mass, m* = 80. We 
discover a new and unexpected mode of vibration, which we define as Mode III, and which 
is shown clearly in Figure 3, extending in a very broad regime of U* from 20 to 40. This 
shows immediately that the upturn of data found in the Water Channel at the upper limit of 
flow speeds is in fact a real effect, and was a rather serendipitous signal of the beginnings of 
a significant regime of periodic vibrations, which we might otherwise have overlooked. 
However, suspicion remained that the results, though apparently real, could be related with 
the proximity of the sphere to the tunnel walls, or with the blockage of the sphere in the test 
section. For this reason, we relocated the complete experiment from the 12 in x 12 in tunnel 
to a larger tunnel of cross-section 18 in x 18 in, and found good agreement between the data 
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of the two tunnels. Finally, we studied the dynamics of a very heavy sphere of mass ratio, 
m* = 940, in the larger tunnel, and found again the Mode III response regime, as shown in 
Figure 3. These experiments provide good evidence for the existence of this mode of 
vibration. 

The sphere dynamics of Mode III are remarkably periodic, as indicated by the typical 
time traces of displacement in Figure 3. The oscillation frequency (/) remains very close to 
the natural frequency (fN) of the tethered sphere (i.e./* =f/fN x 1), which is a consequence 
of the high mass of the spheres in this case. [Very low mass ratios yield oscillation 
frequencies which are higher than, and depart significantly from, the natural frequency, as 
shown in Govardhan & Williamson (1997)]. The existence of such a Mode III was 
completely unforeseen, because such a regime does not exist in the case of the cylinder free 
vibration, and also because it must reflect the presence of between 3 and 8 wavelengths of 
vortex formation, for each wavelength of body vibration. Therefore, this mode cannot be 
explained as a classical "lock-in" of the principal vortex shedding frequency with the body 
oscillation frequency. 

For this high-speed mode of vibration to exist, there must be a net energy transfer from 
the fluid motions to the body motions, over each cycle of sphere oscillation. If one assumes 
that the transverse displacement (y) and force (F) are represented by the following functions: 

y{i) = A sin(cot), 

F(i) = F0 sin(a>„£ + <p) 

and that the system damping and stiffness are linear, then one can simply show that the net 
energy transfer over a cycle of body oscillation (£in) is given by 

£in = (F0 A <x>) sin <j> cos (cot) cos (a>0t)dt. 
o 

This integral is only nonzero if co = w0. In other words, as one might expect, there is only 
energy transfer if there is a periodic component of the fluid force synchronized with the 
body oscillation frequency. The principal vortex structures are formed at a frequency much 
higher than the body oscillation frequency, and these cannot be expected to contribute to 
the body dynamics. 

However, there must exist vortex dynamics which are repeatable in each cycle, and which 
give rise to the fluid forcing component that is synchronized with the body motion. 

One should note that it is possible that the vortex shedding is modulated by the 
low-frequency body motion, such that self-excited motion will ensue. Although the exist- 
ence of this Mode III is reported in this paper, the vorticity dynamics, which would explain 
its existence, will be explored in Govardhan & Williamson (2001), using the DPIV 
technique. 

4. MODE "IV": INTERMITTENT BURSTS OF LARGE AMPLITUDE VIBRATION 

With further increase of normalized flow speed, beyond the regime for Mode III, one might 
finally expect negligible response amplitude, and this is the case until about 17* = 100. 
However, beyond this speed, we discovered yet another vibration mode, that grows in 
amplitude and persists to the limit in flow speed of our wind tunnel (in excess of U* = 300), 
as shown in Figure 4. (We must expect that the amplitude of this mode will ultimately 
saturate at sufficiently high velocity.) In this case, the sphere dynamics are not close to 
periodic, and are characterized by intermittent bursts of large-amplitude vibration, as may 
be seen in the typical displacement time traces in Figure 4, at U* = 120 and 220. These 
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Figure 5. Position spectra in the different sphere oscillation modes for m* = 940. Interestingly, although Mode 
IV has a low "periodicity", the vibration frequency (/) remains close to the natural frequency (fN) ie 

/* =///» * i-o. 

intermittent vibrations may be contrasted clearly with the periodic vibrations of Mode III, 
also shown in the figure, for U* = 30. 

A measure of the periodicity of the displacement may be given by plotting what we call 
the "periodicity" = (y/2yimJymsiI), as a function of velocity, U*. A purely sinusoidal func- 
tion has a value of "periodicity" equal to 1-0, and so the vibration Modes I, II and III are 
evidently strongly periodic, as also shown by the spectra in Figure 5. Mode IV, as expected 
has a low "periodicity", but interestingly, despite the bursts of large-amplitude vibration for 
this mode, the vibration frequency remains very close to the natural frequency throughout 
the range of velocity up to at least U* = 300, as shown by the typical spectrum in Figure 5. 
Clearly, the much higher principal vortex shedding frequency (around 40-50 times the 
vibration frequency) is not itself responsible for these large vibrations! The origin of these 
large transient bursts of vibration remains unknown. 

5. CONCLUDING REMARKS 

In this paper, we present evidence for the existence of an unforeseen, highly periodic mode of 
vortex-induced vibration for a tethered sphere, which occurs at speeds far above what might 
be expected, based on classical "lock-in". The sphere appears to oscillate at large ampli- 
tudes, which can be up to one diameter for spheres of moderate mass ratio (m* ~ 10), over 
a broad range of normalized velocities, U* = 20-40. Vibration modes of a tethered sphere, 
which might be explained in terms of classical lock-in of the vortex frequency with the body 
frequency, have been discovered in Govardhan & Williamson (1997, 2001), and defined 
there as Modes I and II. 

However, for the present high-speed "Mode III", the principal vortex shedding frequency 
is from 3 to 8 times the body oscillation frequency, and so the classical lock-in of frequencies 
cannot explain this vibration mode. Nevertheless, in order for these remarkably periodic 
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vibrations to occur, there must be a component of fluid force that is exciting the body at its 
oscillation frequency. One may suggest that the body vibration is causing some modulation 
to the vortex formation sufficient to provide a fluid force at the vibration frequency, and 
with the right phase (between force and displacement) to excite such vibration. Indications 
of this are suggested by further work using force, displacement and vorticity measurements 
in Govardhan & Williamson (2001). One might suggest that the high-speed Mode III 
vibrations are the result of a "movement-induced vibration" of the type classified in 
Naudasher & Rockwell (1993), such as flutter and galloping, where the body dynamics may 
be explained in terms of quasi-steady analysis. In our case, the body is spherically symmet- 
ric, so a direct link is not evident. A further unsteady mode of vibration (defined here as 
Mode IV), characterized by intermittent burst of large amplitude, is found for extremely 
high velocities beyond 17* = 100, and the origin of this mode remains unknown. 
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The wakes of circular cylinders with free hemispherical ends and of different aspect ratios 
(length-to-diameter ratios) are experimentally studied for moderate Reynolds numbers. This 
investigation is restricted to cylinders with low aspect ratios, namely less than 5, and includes 
the case of the sphere. The transition to nonstationarity of the flow in these cylinder wakes is the 
main focus of this work: the results show that the stability of wakes is strongly dependent on 
aspect ratio and is also affected by the free-end conditions. We characterize the frequency, 
amplitude and phase as well as the critical Reynolds number of the periodic vortex shedding 
regime. © 2001 Academic Press 

1. INTRODUCTION 

THE ALTERNATE VORTEX SHEDDING from the two sides of a cylinder, due to the Benard-von 
Kärmän instability, has received a great deal of attention in the past and these researches 
have been the object of extensive reviews [e.g., Williamson (1996)]. Although three-dimen- 
sional phenomena, such as oblique shedding, cellular structure and dislocations, are 
dominant for finite cylinders, even with large length-to-diameter ratios, the studies deal 
mainly with the two-dimensional parallel shedding. On the one hand, recent investigations 
have been in part devoted to experimentally promote parallel vortex shedding by manipula- 
tion of the end conditions [see, e.g., Williamson (1988), Eisenlohr & Eckelmann (1989), 
Hammache & Gharib (1989)] and, on the other hand, to model the three-dimensional 
structure of the cylinder wake. For example, Albarede & Monkewitz (1992) and Albarede 
& Provansal (1995) have shown the ability of the phenomenological Ginzburg-Landau 
model to describe the three-dimensional phenomena observed in the wake of a finite 
circular cylinder as a collective interaction of nonlinear oscillators. 

For a finite cylinder with "natural" end conditions (i.e., without manipulation), namely 
with end plates parallel to the free stream or with free ends, experiments of Gerich 
& Eckelmann (1982) show a cellular structure for the periodic wake, with cells of lower 
frequency in the regions near the ends, for long enough cylinders [see also Williamson 
(1989)]. Free-end cylinder wakes have also been investigated numerically by Dauchy et al. 
(1997) and experimentally by Slaouti & Gerrard (1981); they report that the vortex shedding 
is diminished or suppressed near the free ends. 

The sphere appears as the limiting case of the geometry of cylinders with two free 
hemispherical ends as considered in the present investigation. In contrast to the cylinder, for 
the sphere wake, the transition to a time-dependent (periodic) flow is preceded by a regular 
axisymmetry-breaking bifurcation giving rise to a wake with a plane symmetry, as described 
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e.g. in recent experimental (Sakamoto & Haniu 1995; Ormieres 1999) or numerical (Johnson 
& Patel 1999; Tomboulides & Orszag 2000; Ghidersa & Dusek 2000) studies. Although this 
plane symmetry is maintained in the periodic regime resulting from this transition [Mittal 
(1999), and the previously cited references], the visualizations [see, e.g., Leweke et al. (1999)] 
of the sphere wake reveals a complex three-dimensional spatial structure with the periodic 
shedding of connected vortex loops. 

Zdravkovich et al. (1989) have performed experiments for low aspect ratio free-end 
cylinders. In particular, using a oil-film visualization technique, they report a change of the 
symmetry of the surface pattern when the aspect ratio is reduced below 3. 

In this paper, the wakes of circular cylinders with free hemispherical ends, including the 
sphere, are experimentally studied at moderate Reynolds number. The experimental set-up 
is presented in Section 2. Effects of aspect ratio and free ends on the onset of transition to the 
periodic wake are discussed in Section 3. The periodic state is characterized in Section 4 and 
the conclusion and the perspectives are given in Section 5. 

2. EXPERIMENTAL DETAILS 

The wake experiments were carried out in a square test-section (0-25 x 0-25 m2) of an open 
low-turbulence wind tunnel. Nine circular cylinders of same diameter D = 10 mm and of 
different lengths L were used. To assure a "continuous" change of the body geometry from 
the cylinder to the sphere, hemispherical ends were used. The values of the aspect ratio L/D 
were 5, 4, 3, 2-6, 2-3, 2, 1-6, 1-3 and 1, respectively; the case L/D = 1 corresponding to the 
sphere. The cylinders were mounted horizontally at the centre of the working section, with 
axis perpendicular to the free stream. They were held in their centre by a bent rigid thin rod, 
as shown in Figure 1, in such a way that their ends were free. The rod was upstream of the 
cylinders and inclined with the free stream of an angle a of order 10°. One effect of this 
holding system was to induce a weak velocity gradient and thus to freeze the symmetry 
plane (see Section 1) of the sphere wake in the plane containing the rod (Sakamoto & Haniu 
1995; Ormieres & Provansal 1999). Ormieres (1999) has shown that, for the sphere, the 
upstream bent rod introduces no change to the dynamics of the wake but can slightly vary 
its threshold of transition to nonstationarity. 

The velocities were measured by laser Doppler anemometry with a mobile measurement 
point. The free-stream velocity U was measured 6D upstream of the cylinders and correc- 
tions were applied for the blockage effect and for the growth of the boundary layers on the 

Figure 1. Experimental geometry and coordinate system. 
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tunnel walls. The temperature of the flow was measured with a thermocouple to calculate 
the kinematic viscosity v of air. Frequencies/and amplitudes of the vortex shedding modes 
were obtained by spectral analysis of the streamwise velocity measured in the wakes. For 
the phase measurements, a hot-wire anemometer was used. The hot-wire sensor was placed 
at a fixed position in the wake of the cylinders and the average phase difference relative to 
the signal of the mobile laser Doppler anemometer was deduced from the cross-correlation 
function. 

For a given cylinder, the wake dynamics is controlled by the Reynolds number based on 
the cylinder diameter Re = UD/v which was varied between 50 and 400 during the present 
experiments. The shedding frequencies/are expressed in nondimensional form either with 
the Strouhal number St =fD/U or with the Roshko number Ro =fD2/v which is based on 
the diffusion time. The interest in using Ro is to avoid the free-stream velocity U which has 
the highest associated uncertainty in the experiments. The estimated errors for the different 
quantities give a statistical error for Re and for Ro in the periodic regime of less than 2%. 

For the following, we use the Cartesian coordinates (x, y, z) defined in Figure 1, with the 
origin at the centre of the cylinder. 

3. TRANSITION TO NONSTATIONARITY 

Increasing the Reynolds number, at a critical value Rec, we observe a transition 
from a stationary state to a time-dependent regime for the flow in the wake of a cylinder. 
Figure 2 shows the evolution with the Reynolds number Re of the square of the amplitude 
of the streamwise velocity fluctuation u'x measured for the sphere (L/D = 1) at fixed 
positions (x/D = 6-5, y/D = — 0-5, z/D = 0-5) in the wake. At a well-defined value Rec of Re, 
the fluctuation amplitude deviates from zero; this critical Reynolds number for the 
transition to the nonstationarity is then determined by extrapolation to zero amplitude of 
the linear behaviour of the ui2(Re) relationship near the threshold Rec. Such a linear 
behaviour is consistent with a Landau-Hopf bifurcation. The critical value Rec for a given 
cylinder has been found to be independent of the location of the measurement point. These 
fluctuation amplitude measurements have been performed for both increasing and decreas- 
ing the Reynolds number and no evidence of a hysteretic cycle has been detected. Thus, the 
bifurcation associated with the appearance of the nonstationary wake flow appears super- 
critical for all the cylinders considered. 

285 

Figure 2. Square of the amplitude of the streamwise velocity fluctuation as a function of Reynolds number. 
L/D = 1 (sphere), x/D = 6-5, y/D = - 0-5, z/D = 0-5. 
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400 

Figure 3. Critical Reynolds number as a function of aspect ratio; 
(Norberg 1994). 

■ -, cylinder confined between two end plates 

The critical values Rec we have obtained for the different cylinders are displayed in 
Figure 3 as a function of the aspect ratio L/D. This diagram shows the strong influence of 
the aspect ratio on the stability of the wake flow: the smaller the L/D, the more stable is the 
stationary regime. In fact, the value of Rec evolves from about 85 for L/D = 5 to about 270 
for L/D = 1. The critical Reynolds number we obtained for the sphere (of about 270) agrees 
with the values found in the recent numerical simulations of Johnson & Patel (1999), 
Tomboulides & Orszag (2000) and Ghidersa & Dusek (2000) which are between 270 and 
280. The small difference with the critical value given in the experimental study of Ormieres 
& Provansal (1999), between 275 and 285, can be explained by a few experimental details. In 
our case, the sphere, constructed from two hemispheres, presents a slight deviation from the 
perfect sphere used by Ormieres & Provansal; moreover, the upstream rod tends to weakly 
decrease this value. 

The stabilizing effect of the reduction of the aspect ratio has been also observed for 
cylinders confined between two end plates parallel with the free stream (Mathis et al. 1984; 
Lee & Budwig 1991; Norberg 1994). The results obtained by Norberg for aspect ratio larger 
than 2 are displayed in Figure 3. These observations agree, at least qualitatively, with the 
Ginzburg-Landau model which predicts that Rec is given by the relation Rec = 
Re«, + B{L/D)~2, where Re«, is the critical Reynolds number for the parallel vortex 
shedding (L/D -> oo) which is known to be about 47; the constant B is proportional to the 
diffusive coupling constant fir of the model [see, e.g., Albarede & Provansal (1995)]. 

Let us note that Albarede & Provansal (1995) have specified that the characteristic length 
to be considered in the model is not the geometrical one of the cylinder L but an effective 
length L' of the oscillating modes (see the next section). Finally, the comparison with the 
results of Norberg (1994) of the critical values Rec (Figure 3) shows that the free-end 
conditions tend to decrease the stability of the cylinder wake. This could be explained by 
a smaller effective length due to the three-dimensional flow near the free ends. 

4. PERIODIC REGIME 

For Reynolds numbers larger than the critical value Rec, the spectrum of the stream wise 
velocity fluctuations measured in the wake, presents a well-defined peak at a frequency/, 
and eventually at its harmonics, characteristic of a periodic state. This single-frequency 
regime, corresponding to periodic vortex shedding, continues up to a second critical value 
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Figure 4. (a) Roshko number and (b) Strouhal number as functions of Reynolds number for the different aspect 
ratios; - - -, parallel shedding (Leweke & Provansal 1995). The vertical lines mark the thresholds of transition to the 
periodic regime for the nine cylinders. 

Rec2 of the Reynolds number (also a function of aspect ratio) after which the velocity 
fluctuations appear less regular and their spectrum is characterized by the presence of 
a second peak at a lower frequency. When the Reynolds number is further increased, 
nonlinear interactions between modes contribute to the appearance of other peaks at 
frequencies equal to linear combinations of the two frequencies. 

To characterize the periodic regime of cylinder wakes, the frequency of the vortex 
shedding has been determined. First, we can note that the same frequency has been found 
for different locations in the wake. In particular, no variation of the frequency along the 
span of the cylinder has been detected, meaning that the wake has a one-cell structure. This 
observation is consistent with the experimental results of Gerich & Eckelmann (1982), who 
report that the cellular structure of the wake disappears when the cylinder length is shorter 
than the dimension of the two end cells. 

Figure 4(a,b) presents the dimensionless shedding frequency, expressed respectively, in 
terms of the Roshko number Ro and the Strouhal number St. The variation of Ro appears 
as an increasing function of the Reynolds number and is quite continuous for all the 
considered cylinders but with a slight change of the slope for the sphere (L/D = 1). For the 
sphere wake at a Reynolds number of 300, the numerical studies of Johnson & Patel (1999), 
Tomboulides & Orszag (2000) and Ghidersa & Dusek (2000) furnish values for Ro between 
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40-5 and 41-1, which are slightly below the value of about 43-4 we found. According to the 
experimental study of Sakamoto & Haniu (1995) of a sphere in a uniform shear flow, this 
difference could be due to the velocity gradient induced by the upstream rod (see Section 2). 

Although the upper limits Rec2 have not been precisely determined, we can also note the 
broadening of the Reynolds number range [Rec, Rec2] for the periodic regime when the 
aspect ratio is decreased. This stabilizing effect of the reduction of the aspect ratio upon the 
limit Rec2 is consistent with the evolution of the critical Reynolds number Rec. 

For comparison, we have displayed in Figure 4 the frequencies obtained by Leweke 
& Provansal (1995) for parallel shedding at Reynolds numbers between 47 and 180. We note 
that the shedding frequencies in the wake of low aspect ratio cylinders with free hemispher- 
ical ends are much smaller than the frequencies associated with the parallel shedding. In 
particular, in the whole Reynolds number range considered, the Strouhal number is less 
than the asymptotic value of 0.2 for parallel shedding. A similar observation has been 
reported by Gerich & Eckelmann (1982) for cylinders confined between two parallel end 
plates when the cylinder length is smaller than the dimension of the two lower frequency 
end cells. The difference of frequencies between oblique and parallel shedding has been 
explained by Williamson (1988) as a consequence of the inclination 6 of the vortex lines 
leading to a universal St (Re) curve after correction for the cos 6 term. For example, at 
Re = 92 (value corresponding to the measurements of Figure 5), we measure Ro « 8-9 for 
the cylinder of aspect ratio L/D = 5, which is compared with the value of 14-7 deduced from 
the universal parallel shedding law giving an average inclination angle of about 52° 
(cos B = 8-9/14.7). 

In Figure 5(a), we present an example (for L/D = 5, Re = 92) of the amplitude evolution 
of the streamwise velocity fluctuation with the spanwise position z. We can see that this 
amplitude is strongly diminished near the free ends of the cylinder as reported in the 
numerical work of Dauchy et al. (1997). We also note that, from flow visualizations, Slaouti 
& Gerrard (1981) state that the free-end effect is to suppress the vortex shedding in the 
vicinity of the ends. 

Thus, one can observe a significant amplitude in the spanwise direction for z in the 
interval [ - ID, + ID]. The effective length L' of the oscillating mode is then determined by 
intersecting the cosine law fit [dashed curve in Figure 5(a)], characteristic of a single-mode 
regime, with the z-axis. This length L' is much smaller than the geometric length L of the 
cylinder which extends from - 2-5D to 2-5D. The subcritical flow near the boundary region 
of the ends suppresses the instability and reduces the effective length L. Spanwise evolution 
measurements of the fluctuation amplitude have been repeated for all the cylinders at 
different Reynolds number. The effective length L appears to be function not only of the 
aspect ratio but also of the Reynolds number. 

The isophase displayed in Figure 5(b) has been obtained under the same conditions 
(L/D = 5 and Re = 92) as the amplitude measurements [Figure 5(a)]. This curve is deduced 
from measurements of the spanwise and streamwise phase evolutions by neglecting the 
variation of the phase with the transverse coordinate y. The phase varies linearly in the 
streamwise direction with a spatial wavelength which evolves from 5-7D to 7-5D for 
cylinders of aspect ratio from 1 to 5, respectively. The isophase curve presents a flat hat 
shape. From this plot, the angle of inclination of the vortices linked to the strong variation 
at the sides would be about 70°, which is in agreement with the average value deduced from 
the frequency measurements. 

The effective length L' has been determined for Reynolds numbers close to the threshold 
Rec for the cylinders of aspect ratio 5, 4, 3 and 2. The corresponding values of Rec are 
displayed in Figure 6 as function of (L'/D)~2 for comparison with the Ginzburg-Landau 
model. 
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Figure 5. (a) Amplitude of the streamwise velocity fluctuation as a function of spanwise position; , fit with 
a cosine law {L/D = 5, Re = 92; x/D = 6, y/D = - 1-25). (b) Isophase in the (x, z) plane y = - 1-250 (L/D = 5, 
Re = 92). 

According to this model, these data can be fitted with a law Rec = A + B(L'/D)'2 having 
two adjustable parameters, A and B. The result of such a least-squares fit gives A x 46-1 and 
B x 252-4. The value of 46-1 for A is very close to the known value, approximately 47, for 
the critical Reynolds number Re«, for the transition to parallel shedding (L'/D -+ oo). From 
parameter B, we can evaluate the diffusive coupling constant pr of the model to be 
approximately 5.1v which is of the same order as the value fir = 10( + 4)v obtained by 
Leweke & Provansal (1994). Let us note that, for this evaluation, we need the value of the 
linear growth rate ar = fc(v/D2)(Re - Re«,). In the case of circular cylinders the value k - 0-2 
is valid for aspect ratio as low as 6, but differs to the one obtained for the sphere for which 
the measurements of Ormieres (1999) give k » 1. 

5. CONCLUSIONS AND PERSPECTIVES 

The transition from steady to unsteady flow has been studied experimentally in the wake of 
nine bluff bodies from a circular cylinder to a sphere. The critical Reynolds numbers have 
been deduced from measurements of oscillation amplitude and have been shown to follow 
a Landau-type bifurcation in each case. The curves of variation of frequency with the 
Reynolds number follow a continuous envelope for all nine cylinders. Whereas the visualiz- 
ations of Zdravkovich et al. (1989) show a symmetry change for an aspect ratio around 3, 
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Figure 6. Critical Reynolds number as a function of (V/D)'2, U is the effective length of the oscillating mode as 
denned in the text; , fit with the formula Rec = A + B(L'/D)~2. 

such a behaviour is not observed in our quantitative results. Measurements of the ampli- 
tude evolution in the spanwise direction have been performed, allowing an effective length 
of the oscillating modes to be deduced, which is shorter than the geometric cylinder length. 
Finally, the critical Reynolds number has been plotted as a function of the effective aspect 
ratio in agreement with the prediction of the Ginzburg-Landau model. 

Recently, Owen et al. (2000) have been able to suppress the von Kärmän vortex shedding 
and to reduce the drag using a sinuous cylinder, namely a circular cylinder with a constant 
diameter and a sinuous axis. In such a configuration, the visualizations reveal vortical 
structures similar to the characteristic connected vortex loops observed behind a sphere or 
short free-end cylinders. Preliminary measurements have been undertaken with a sinuous 
cylinder with a spanwise wavelength of 5-6D and a peak-to-peak amplitude of 2D. A critical 
Reynolds number of 104 has been found. From the results of Figure 3, this value would 
correspond to a free-end cylinder of aspect ratio between 3 and 4. Moreover, the variation of 
the frequency measured in the wake of this sinuous cylinder fits perfectly to the continuous 
law (Figure 4) obtained in the present study, in this range of aspect ratio. In the future, our 
objective is to compare simultaneous measurements of amplitude, phase and frequency with 
the case of free-end cylinders. It would be worthwhile to check if a long sinuous cylinder 
behaves like a collection of free-end cylinder-type oscillators. 
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The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from 
laminar to turbulent. This paper concentrates on the first two transitions. At Re = 212 a regular 
transition occurs, when the wake develops a spectacular two-tailed structure consisting of 
two trailing streamwise vortices. During the second transition at Re = 272 the flow undergoes 
a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices 
leading to the periodic shedding of vortex loops. Both these transitions are shown to be 
supercritical (or nonhysteretic). Landau models are constructed for both transitions and 
the coefficients determined. The visual impression of an apparently sudden bifurcation to the 
two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye 
into the cores, even if their net circulation is small. A precursor to the second transition to 
the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from 
the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also 
quantified which may prove useful for development of models of the transition process. 

© 2001 Academic Press 

1. INTRODUCTION 

As THE REYNOLDS NUMBER is increased, the wake behind a sphere undergoes a series of 
well-defined transitions on its way to becoming fully turbulent. At low Reynolds number 
the separation bubble is axisymmetric. The attached separation bubble grows in length 
until the Reynolds number reaches approximately 210. 

The first transition involves a (regular) symmetry-breaking topological change from 
a steady axisymmetric wake with an attached separation bubble to a steady nonaxisymmet- 
ric wake consisting of a shortened separation bubble with two trailing counter-rotating 
vortices. In experimental visualizations dye is trapped in the vortex cores and this leads to 
a dramatic two-threaded structure shown in Figure 1(a). 

Johnson & Patel (1999) found numerically that this transition occurs at approximately 
ReCl = 211. This value compares well to the value determined by Tomboulides et al. (1993) 
and Tomboulides & Orszag (2000) (Re = 212) using a similar numerical formulation to that 
used to obtain the current results. These values are consistent with experimental predictions 
which tend to be lower, but have an upper limit close to the numerical estimates. This is 

0889-9746/01/040575 + 11 $35.00/0 © 2001 Academic Press 
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Figure 1. Dye visualizations of the sphere wake: (a) two-tailed stationary wake; (b) wake in the periodic regime. 

probably because of perturbations introduced by the support structures. Magarvey 
& Bishop (1961a, b) found the two-threaded wake to exist in the range 210 < Re < 270, 
Nakamura (1976) found the transition occurred at Re = 190, and Ormieres (1999) and 
Ormieres & Provansal (1999) observed the two threads between 180 < Re < 280. In 
addition, the stability analysis of Natarajan & Acrivos (1993) revealed a regular, i.e., 
time-steady transition at Re = 210. 

The second topological transition is from the steady two-threaded wake to a periodic 
wake in which the trailing vortices form kinks that develop into strongly skewed loops, and 
these move away downstream as shown in Figure 1(b). 

Again, there have been various studies documenting and analysing this transition. The 
critical Reynolds number (RecJ has been determined experimentally to be: 280 (Ormieres 
& Provansal 1999), 300 (Sakamoto & Haniu 1995), between 270 and 290 by Magarvey 
& Bishop (1961a, b), and in the range 200-300 in the older study by Taneda (1978). 
Numerical simulations predict values Re = 270 (Johnson & Patel 1999), and in the range 
250-280 (Tomboulides et al. 1993). In addition, the stability analysis of Natajaran & Acri- 
vos (1993) found the transition to occur at Re = 277, although they based the stability 
analysis on an axisymmetric base flow. 

The aim of the present study is to examine certain dynamical and topological features of 
the first two transitions, in particular, whether they are subcritical or supercritical, i.e., 
whether the transitions are hysteretic or not. The initial regular transition, in particular, 
shows a distinct (apparently discontinuous) change in flow topology and it is difficult to 
imagine a priori how the transition could take place smoothly. 

The transitions for the circular cylinder wake are well modelled by the Landau equation; 
especially in the neighbourhood of the transitions. For example, Dusek et al. (1994) apply 
the model to the transition from steady two-dimensional flow to periodic two-dimensional 
flow, and Henderson (1997) uses it to describe the transition from two- to three-dimensional 
shedding. This theory can also be applied to the present system as has been done by 
Ormieres & Provansal (1999), especially for the second transition. They find that the 
fluctuation energy varies linearly with (Re - ReC2), as expected for a supercritical transition 
obeying the Landau model. 

2. NUMERICAL METHOD 

A uniform flow with speed Ua>=\ was directed along a positive z-axis past a sphere 
centred at (z, r, 6) = (0,0,0) of radius R = 1. The Reynolds number is based on diameter (Z)) 
and is defined as Re = U^D/v, where v is the kinematic viscosity. 

The current simulations employed a spectral/spectral-element method for axisymmetric 
geometries. A spectral-element discretization was used in the r-z plane and a Galerkin- 
Fourier expansion in the 0-direction. Typically, sixth-order tensor product Lagrangian 
polynomial expansions were used in each element and 24 Fourier planes in the 0-direction. 
An initial study was performed to verify that the resolution was sufficient to resolve the 
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details of the flow, and selected higher-resolution simulations were used to verify the 
accuracy of the results. More details about the method can be found in Thompson et al. 
(1996). 

3. RESULTS 

3.1. THE FIRST TRANSITION 

Numerical simulations were performed at Reynolds numbers between 200 and 300. This 
covers the regular and periodic transitions. Typically, the initial velocity field for the next 
Reynolds number in the sequence is the asymptotic state of the previous Reynolds number 
solution examined. 

We assume and verify that the initial transition behaves according to the Landau model: 

^ « a A - IA\ (1) 
at 

where A represents the (global) perturbation amplitude of some quantity from the base flow. 
The right-hand side effectively represents the first two terms in a series expansion. The 
truncation is appropriate in the neighbourhood of the critical Reynolds number providing 
/ is positive, otherwise higher-order terms determine saturation of the unstable mode. The 
coefficient a is the growth rate coefficient in the linear regime. It changes from negative to 
positive through the transition and hence determines the stability of the system. The 
transition is supercritical if / is positive so that the first nonlinear term causes the initial 
linear growth of the instability to saturate. If / is negative then the next term in the series is 
required because that term (or higher-order terms) leads to the saturation of the transient 
growth. It can be shown (e.g., Dusek et al. 1994) that the energy in the mode (A2) varies as 
aß, which in turn is proportional to (Re-ReC2). Thus, the transition can be shown to be 
supercritical by examining the sign of / and the behaviour of the A2 away from the 
transition. (Note that because this transition is from one steady solution to another, A does 
not need to carry any phase information, so it is sufficient to take it to be real. For the 
second transition, a Hopf bifurcation, it is necessary to take A and the equation coefficients 
to be complex numbers.) 

Two methods were used to determine the nature of the transition. The first involved 
recording the time-dependence of the velocity components during the transient evolution at 
a (mesh) point (4-3,0,0) downstream of the sphere. The azimuthal velocity component (w) 
can be used to monitor the growth of the instability, since it is zero prior to criticality. 
Although the parameter / may vary in magnitude (because the saturation value of the 
velocity perturbation will vary from point to point), we expect the sign should be consistent 
throughout the wake. The linear growth rate (a) does not vary with position. Since the 
amplitude in the Landau model should be a global property of the wake, another method 
was used to verify the results obtained by this method. The second method was to define 
a global amplitude by 

\A\2 

' snhfire U i 
2 l(u3D - «2D)I

2
 dV, (2) 

n v sphere y 

where the integral is over Q, the volume of the domain (Henderson 1997). [The nondimen- 
sionalization by the volume of the sphere (Fsphere) and the upstream speed (£/„) is arbit- 
rary.] This integral depends on the numerical domain size, which again means that I is not 
determined uniquely, but since we are mainly interested in the sign of the cubic term this is 
not a concern. 
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Figure 2. (a) The transition in terms of the global amplitude method. The dashed straight line shows the linear 
behaviour (for reference). The Reynolds number is 215. (b) Plot of d log|A|/dt versus \A\2 during transition. The 
vertical intercept gives the growth rate (a = 0-004868) and the gradient is equal to / ( = 3-78). The linear behaviour 
near \A\2 = 0 also verifies that the first nonlinear term in the Landau model is a cubic term. The deviation from 

linearity for higher values indicates that higher-order terms become important close to saturation. 

One determination of the critical Reynolds number is obtained from the behaviour of the 
linear growth rate (a) versus Reynolds number. Using a quadratic fit to the growth rate 
measured at Re = 205,215, and 220, it becomes positive at ReCl = 212, close to predictions 
from other direct simulations and stability analysis. 

The nature of the transition was determined by the sign of / for Re = 215; just slightly in 
excess of the critical Reynolds number. Figure 2(a) shows the logarithm of the amplitude of 
global perturbation mode. The evolution using the point method (not shown) is consistent 
with this behaviour. This graph indicates the supercritical nature of the transition since the 
initial deviation from linearity is to decrease the growth rate. 

The parameters a and / can be determined accurately by plotting d log|^4|/dt versus \A\2. 
For the point speed method this plot is shown in Figure 2(b). The ^-intercept corresponds to 
a, and the gradient gives /. The values are a = 0-004868 and / = 3-78. This growth rate 
agrees with the value obtained by the global mode method. 

Note that the Landau model theory (and dimensional analysis) suggests that the growth 
rate depends on the diffusion timescale and the distance to the critical Reynolds number, 
i.e., 

1     D2 

 (Re-Re,,)"1. (3) 

For Re = 215, the right-hand side is 129, given (Re - ReCl) x 3, while the actual growth rate 
timescale is 1/0-00486 = 205. 

The Landau model also predicts that the square of the amplitude of the perturbation 
should be proportional to (Re - ReCi) close to the transition. Figure 3 shows the behaviour 
of the energy in the saturated mode as a function of Reynolds number. A convenient 
measure of the energy is given by the azimuthal component, i.e., 

\AB\2 = 
1 

V u    U2 
' sphere w oo 

\w\2 dV. (4) 

This is used because it does not require the calculation of the two-dimensional base flow 
(since the azimuthal velocity component is zero prior to transition). 
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Figure 3. Plot of \A^ against Reynolds number again confirming the transition is supercritical and well 
described by the Landau model. 

3.2. THE TRANSITION PROCESS 

There has been some discussion in the literature of the physical process leading to the 
transition and maintenance of the saturated state. For example, Johnson & Patel (1999) 
examine the process in terms of pressure, and Shirayama (1992) in terms of limiting surface 
streamlines. Some insight into the physical mechanism behind the bifurcation can be gained 
by examining the development of streamwise vorticity during the transition. Figure 4(a) 
shows streamwise vorticity isosurfaces corresponding to cuz = + 0-01 at time 1400. Again 
the Reynolds number is 215. This is still in the linear growth regime. The initial develop- 
ment of streamwise vorticity apparently results from the tilting of azimuthal vorticity 
generated on the surface of the sphere. Below the transition point, rings of fluid which pass 
close to the surface of the sphere maintain their axes pointing along the z-axis. Above the 
critical point these rings become tilted, as can be verified by examining isosurfaces of 
stream-wise velocity component near the surface of the sphere. This tilting converts the 
azimuthal vorticity into streamwise vorticity — positive on one side of the sphere and 
negative on the opposite side, as is shown in Figure 4(a). After generation, the vorticity is 
carried away from the surface into the wake flow when the flow separates from the 
separation line at the back of the sphere. This process produces the double-threaded wake 
structure as seen in the experiments. The threads maintain considerable vorticity down- 
stream as shown in Figure 4(b), which displays the wake structure at saturation. Johnson 
& Patel (1999) discuss the transition process in more detail and in particular demonstrate 
that the transition from axial to planar symmetry is associated with the out-of-symmetry- 
plane velocity component in the wake. 

As commented previously, the experiments indicate that the two-threaded wake seems to 
appear quite suddenly once the critical Reynolds number is exceeded. Also note the 
apparently discontinuous change in wake topology, which seems to suggest that the 
transition might be subcritical. However, it is difficult for experiments to determine 
hysteresis directly. As shown in the previous section, the Landau model indicates the 
transition is not subcritical. The visualization of the developing streamwise vortex filaments 
shown in Figure 4(a) provide an explanation of why the dye filaments appear to occur 
discontinuously at transition. The visualization shows that there is a release of streamwise 
vorticity into the wake from distinct points on opposite sides of the attached separation 
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Figure 4. (a) Isosurfaces of positive and negative streamwise vorticity (coz = + 0-01) in the neighbourhood of 
the sphere during the transition to non-axisymmetric flow for Re = 215. (b) Isosurfaces at saturation for the same 

Reynolds number. 

bubble. Note that this visualization shows the shape of linear instability mode structure. 
Importantly, the two trailing vortices do not migrate from the centreline as they grow in 
strength. Even very close to transition, although these structures possess little streamwise 
vorticity, they act as stable foci and hence draw dye into their cores. Thus, it is expected that 
there should be a sudden change to the wake at transition as monitored by dye visualiz- 
ations. 

3.3. WAKE DEVELOPMENT AFTER THE FIRST TRANSITION 

The wake in this regime is characterized by counter-rotating vortex threads, usually 
observed in the experiments as two trailing dyelines. The counter-rotating vortices induce 
a velocity at the centreline of each other causing them to be convected away from the 
centreplane. 

For Re = 250, the vortex thread structures are visualized in Figure 5. This figure shows 
a top and side view of the threads highlighted by plotting the 0-015-isosurface of the 
imaginary component of the eigenvalue of the velocity gradient tensor [e.g., Mittal (1999)]. 

The diffusion timescale D2/v = Re D/U«, is approximately 500 for the dimensions used in 
the current simulations. Since the velocity in the wake is approximately the free-stream 
velocity, this means that diffusion is slow to cross-diffuse the two vortex threads, so they 
should preserve some strength for a considerable distance downstream even though they 
are close together. 

Cross-sectional contour plots of the streamwise vorticity are shown in Figure 6 at z = 3R 
and 12R downstream of the sphere. The contours deviate considerably from circularity even 
in the cores, presumably due to both cross-diffusion and the initial formation mechanism. 
Concerning the latter, Johnson & Patel (1999) have demonstrated that the tilting of vortex 
rings (as discussed above) in the initial formation region leads to streamwise vorticity being 
shed from a more downstream portion of the recirculation region. However, it is still 
possible to fit the profiles reasonably well using a combination of Gaussian vorticity 
distributions. 

A least-squares fit of the actual vorticity distribution was computed for the following 
functional fit: 

äz = - S exp[ ~{x- x0)
2/a2 -{y- y0)

2/b2'] 

+ S exp[ - (x + x0)2/a2 - (y - y0)
2/b2] (5) 
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Figure 5. (a) Top and (b) side view of the trailing vortex threads for Re = 250. See text for details. The view of the 
sphere is obstructed by the isosurface. Note the irregularity of the structure covering the sphere is an artefact of the 

nonregular node-point distribution. 
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Figure 6. Streamwise vorticity contours for Re = 250 at (a) z = 3R and (b) 12R. 

with z in the range [21?, 151?]. Here x and y are the Cartesian coordinates in the cross- 
planes. There are five fitting parameters: S, a, b, x0 and y0. The goodness of fit improves 
further downstream. A typical indication of the fit is shown in Figure 7 for Re = 250 and 
z = 101?. Notice that the distribution in the y-direction is not symmetrical about the centre 
of each vortex; this is probably at least partially due to the induced velocity moving the 
vortices away from the centreplane. 

The variation of the parameters as a function of distance and Reynolds number is shown 
in Figure 8. Interestingly, these figures show increased kinking of the trailing vortex 
filaments at 3 radii downstream from the sphere centre as the Reynolds number gets close to 
ReC2, especially noticeable in terms of the distance parameter x0. The tails get closer 
together at this point, before moving apart again. Figure 9 is an isosurface plot of the tail 
structure at Re = 270, only slightly below the transition Reynolds number ReC2. This clearly 
shows the distortion. The kinking is considerably weaker at lower Reynolds numbers such 
as shown in Figure 5. It seems reasonable to speculate that this may be associated with the 
transition to the periodic wake. A typical post-transition visualization of the tail structure is 
shown in Figure 9(b) (see also Mittal 1999). 

Figure 8(f) shows the variation of maximum vorticity in the threads as a function of 
downstream distance for Re = 250. This indicates the vorticity at the centre of the threads 
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Figure 9. Isosurface plot of the vorticity structure, (a) Two-tailed wake at Re = 270, just below the transition to 
periodic wake flow, (b) Re = 290 (side view). 

decays (through diffusion and cross-annihilation) by a factor of about three over the 
first five diameters downstream of the sphere. The decay is much slower further down, and 
clearly the vortices maintain some strength for a considerable distance downstream. 

3.4. THE SECOND TRANSITION 

According to the current simulations, between Re = 270 and 280 the transition from 
a stationary nonaxisymmetric wake to a periodic nonaxisymmetric wake takes place. 

At Re = 270 the growth rate for the development of the periodic mode is aR = — 0-00283, 
while at Re = 280 the value is aR = 0-015. Linear interpolation between these two values 
indicates that the transition occurs at about ReC2 a> 272. This is consistent with other 
numerical predictions described previously [e.g., Johnson & Patel (1999), Tomboulides 
et al. (1993), Tomboulides & Orszag (2000)] and slightly lower than the transition value of 
277 predicted by the linear stability analysis of Natarajan & Acrivos (1993). 

In this case, because phase information is required, the transition is modelled by the 
complex Landau equation 

A A 

-T = (fl* + ifl/M - fe(l + ic)\A\2A. (6) 
at 

By assuming a solution of the form A = p exp[i<£(f)], this complex equation can be 
decomposed into an equation for the amplitude, p, and an equation for the phase, <j>{t). The 
equation for the (real) amplitude is of the same form as before 

-£ = aRp- lRp3 (7) 

[see Le Gal et al. (2001), this issue, for more details]. As for the previous transition, the 
nature of the instability can be assessed by examining the sign of the (real) Landau 
coefficient (lR). Figure 10(a) shows the growth and saturation of the periodic wake. Initially, 
the flow receives a large jolt as the Reynolds number is increased from Re = 270 to 280. The 
transient dies away while the growth of the instability is still in the linear regime. 

Numerical estimates of the coefficients in the Landau model can be obtained from Figure 
10(b) which shows the variation of d log| Famp |/dr with |Famp|

2, where |Famp| is the amplitude 
of the velocity in the r-d plane at the sampling point (4-3,0,0). This plot provides values of 
aR =0-015 and lR = 40-54, verifying the transition is supercritical. This finding is consistent 
with the experimental investigations of Ormieres & Provansal (1999) who demonstrated 
supercriticality by showing the linear variation of perturbation energy with Reynolds 
number above the transition value. An attempt is currently being made to verify the 
conclusion of the point method by using the global amplitude method. The results will be 
reported elsewhere. 
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Figure 10. (a) Growth and saturation of the wake instability at Re = 280 as measured by the vertical velocity 
component at a point in the wake, (b) d log\Vmp\/dt versus \Vsmp\2 used to determine the values of aR and lR. This 

indicates the transition is supercritical. 

Simulations closer to the transition Reynolds number have also allowed an accurate 
determination of the Landau constant of c = - 0-554 at Re = 273. It is of interest that this is 
significantly smaller in magnitude than the corresponding value c ~ — 3 for the Hopf 
bifurcation for a circular cylinder wake [e.g., Dusek et al. (1994), Le Gal et al. (2001)]. 

4. CONCLUSIONS 

This paper has examined the first two transitions in the wake of a sphere. Both the regular 
transition at Re = 212 and the Hopf bifurcation at Re = 272 are supercritical (or nonhys- 
teretic), as determined from the evaluation of the cubic coefficients of the Landau model. 
The apparent sudden occurrence of the two-threaded wake structure observed in the 
experiments seems to be due to the release of streamwise vorticity into the wake from 
distinct points on opposite sides of the attached separation bubble. Even though these 
stream wise vortical structures possess little vorticity close to the transition Reynolds 
number, they act as stable foci and hence draw dye into their cores, leading to the possible 
misinterpretation of the transition as subcritical. 

The vortical structure of the trailing threads has also been quantified and clearly shows 
kinking at about 3 radii downstream of the centre as the Reynolds number approaches the 
critical value. It may be possible to use this quantitative description of the wake to construct 
a simplified physical model of the transition process. 
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Numerical investigations have been performed to study the flow past square-section cylinders 
with a spanwise geometric deformation leading to a stagnation face with a sinusoidal waviness. 
The computations were performed using a spectral//ip element solver over a range of Reynolds 
numbers from 10 to 500. Starting from fully developed shedding past a straight cylinder at 
a Reynolds number of 100, a sufficiently high waviness is impulsively introduced resulting in the 
stabilization of the the near-wake to a time-independent state. The steady nature of the 
near-wake is associated with a reduction in total drag of about 16% at a Reynolds number of 
100 as compared with a straight, non-wavy cylinder. Further increases in the amplitude of the 
waviness lead to the emergence of hairpin vortices from the near-wake region, similar to the 
wake of a sphere at low Reynolds numbers. At higher Reynolds numbers, the drag reduction 
increases substantially, e.g. at a Reynolds number of 500 it is 34%, principally due to the 
increase in drag of the nonwavy cylinder. Alternative methods based on three-dimensional 
forms of bleed are investigated to suppress the von-Kärmän vortex street of a straight, 
non-wavy cylinder. © 2001 Academic Press 

1. INTRODUCTION 

To REDUCE THE DRAG and weaken the vortex shedding of two-dimensional bluff 
bodies, three-dimensional disturbances can be introduced into the base geometry. Tanner 
(1972) introduced a broken separation line along the trailing edge of a blunt aerofoil. 
He applied a stepwise deformation to the trailing edge and observed that by increasing 
the depth of the steps, larger base drag reductions are obtained. The maximum drag 
reduction obtained using this method was 64%. The study of this drag reduction 
technique (segmented trailing edge) was then continued by Rodriguez (1991) and Petrusma 
& Gai (1994). 

Bearman & Tombazis (1993) and Tombazis & Bearman (1997) investigated the three- 
dimensional features of the wake behind a blunt-based model with a wavy trailing edge at 
a Reynolds number of 40000. They observed that the introduction of a spanwise waviness 
at the trailing edge fixed the positions of vortex dislocations along the span of the body. 
Increasing the wave steepness, defined as the ratio of peak-to-peak wave height divided by 
the wavelength, increased the base pressure which resulted in a drag reduction. The 
maximum drag reduction of 34% at a Reynolds number of 40000 occurred for a wave 
steepness of 0.14. Based on these facts, they concluded that encouraging the formation of 
dislocations in the wake reduces the drag. 

More recently Bearman & Owen (1998a, b) continued the above work by applying the 
waviness at the leading edge of a rectangular cross-section body. They observed that a mild 
disturbance (wave steepness of only 0-06-0-09) resulted in the complete suppression of 

0889-9746/01/040587 + 10 $35.00/0 © 2001 Academic Press 
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vortex shedding and substantial drag reduction of at least 30% at a Reynolds number of 
40000. 

The aim of the current work is to carry out well-resolved numerical simulations of the 
flow past three-dimensional bluff bodies with a sinusoidal stagnation surface. The geomet- 
ries used in this work have both sinusoidal front and rear faces. In the work of Bearman 
& Owen (1998a, b), only the front face was wavy for the rectangular cross-section bodies. 
However, in their experiments, similar results were also obtained with a flat plate which had 
both wavy front and rear faces. This latter result would suggest that the wavy trailing edge 
does not influence the qualitative observations made during the experiments of Bearman 
& Owen (1998a, b). 

This paper is outlined as follows. Section 2 details the problem definition and 
introduces the nondimensional parameters as well as the numerical method. In Section 3, 
we present the main results of the effect of varying the Reynolds number for a cylinder 
with a constant amplitude of waviness. In addition, the effects of various forms of 
three-dimensional bleed on the wake topology of a straight, nonwavy cylinder are 
investigated. 

2. PROBLEM DEFINITION AND SIMULATION METHOD 

We are interested in the flow past a square-section cylinder with a waviness in both the 
front and rear faces as shown in Figure 1. The wavy cylinder is defined by the peak-to- 
peak wave height W, the wavelength k and the base height D. The free-stream velocity Ux 

is aligned with the x-axis (streamwise direction), the span of the cylinder is aligned to 
the z-axis (spanwise or cross-flow direction) and finally the y-axis will be denoted as the 
vertical direction. We define the Reynolds number based on the base height D as 
Re = UxD/v, where v is the kinematic viscosity of the fluid. The maximum denotes the 
most upstream cross-section (peak), while the minimum denotes the most downstream 
cross-section (valley). Furthermore, the waviness of the centreline (defined as a line going 
through the centroid of the body along the span) can be expressed mathematically in the 
following form: 

W 
S(z)=   --yCOS(27tz/A). (1) 

Figure 1. Schematic of the cylinder with the waviness at both the leading and trailing edge surfaces. 
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2.1.   DlMENSIONLESS LENGTH SCALES 

In contrast to the standard flow past a non-wavy cylinder, we have now introduced two 
extra length scales: W and X. Whilst the non-wavy case can be completely characterized by 
the Reynolds number based upon the base height D, we now have a further two independent 
length parameters that we choose to define as W/X and X/D. 

Differentiating equation (1) with respect to z gives an expression for the slope of the 
waviness d£/dz: 

^ = 7i ^ sin (27CZ/A) = As sin (2%z/X), (2) 
dz X 

where As = nW/X is the maximum magnitude of the slope and depends on W/X which is 
defined as the wave steepness (Bearman & Owen 1998a, b). The slope of the waviness which 
is proportional to the wave steepness reaches a maximum value of As at the inflection points 
z = X/4,   31/4. 

2.2   SIMULATION METHOD 

A parallel spectral element code jVex^ar (Sherwin & Karniadakis 1995) was employed to 
solve the three-dimensional incompressible Navier-Stokes equations. Spectral element 
methods have been widely used in the past for the prediction of bluff body flows due to their 
high spatial accuracy. Solution refinement can be obtained either by refining the mesh 
(/i-refinement) or increasing the polynomial order P (P-refinement). To incorporate the 
wavy geometries, a geometric mapping is introduced as previously adopted by Newman 
(1996) and Evangelinos (1999). Application of the mapping to the Navier-Stokes equations 
leads to the modified set of equations: 

$ + (u • V)u = - Vp + ^- V2u + A(u,p,ft 

V-u = 0, (3) 

where A(u, p, £) = [Ax, Ay, AZ~\T is the d'Alembert forcing term which as reported in Darekar 
& Sherwin (2001) has nonzero inviscid contributions of the form 

Az = n -y sin (Inz/X) -j-, (4) 

A, = 4 sin^z/A) | - TX
2
 0Q2 sin2 (2nz/X) | (5) 

W 
— 2w2n2 -7j cos (2nz/X). 

3. RESULTS AND DISCUSSION 

3.1. PARAMETER SPACE STUDY 

In Darekar & Sherwin (2001), the wavelength X and amplitude W of the waviness were 
varied at Re = 100 introducing different degrees of geometric three dimensionality in the 
wake. From consideration of the wake topology in terms of the Jeong & Hussain (1995) 
identification criteria and force characteristics, the effect of introducing a wavy stagnation 
face was classified into five distinct regimes. A summary of the parameter space study is 
shown in Figure 2. 



590 R. M. DAREKAR AND S. J.   SHERWIN 

10 

-     I     H(b)     / 
:     I 7 

5 

2 - 

-   I   >    >/■ 

_/ "Kb) 

r     4 Ax« 
y 
V     o 

lll(a) 

'//77 11(a) 

„   .i   i   i   i  I  i  i  i  i  I  i  i  i  i  I  i  i   i   i  
0 0.05 0.10 0.15 0.20 0.25 0.30 

W/X 

Figure 2. Summary of the parameter space study: X/D versus W/X at Re = 100. O, regime I; O, regime II (type 
A); |>, regime II (type B); •. regime III (type A); ■, regime III (type B). From Darekar & Sherwin (2000) 

Figure 3. Perspective view from above showing the three-dimensional wake: (a) regime I; (b) regime II (type A). 

For a mild geometric waviness we obtain regime I, where the formation of the wake at the 
base of the cylinder is mildly three dimensional and the force history is similar to the 
straight cylinder. However, as the wake evolves further downstream there is a discernible 
deformation of the span wise Kärmän vortices [see Figure 3(a)]. 

For a slightly higher level of waviness we obtain a transitional regime denoted as regime 
II. In this regime the effects of the geometric waviness in the formation region are more 
dominant. A large spanwise curvature appears in the top and bottom shear layers and an 
associated drop occurs in mean drag and the root-mean-square of the lift. Further down- 
stream, we observe the formation of streamwise vortices associated with the sinusoidal 
spanwise deformation of the distorted Kärmän vortices. Within this transitional regime II, 
we make a further distinction between normalized wavelengths above and below X/D « 5-6. 
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For X/D < 5-6, denoted as regime II (type A), we observe a time periodic state with a single 
frequency where streamwise vortices occur in the braids and connect adjacent Kärmän 
vortices [see Figure 3(b)]. These streamwise vortices have some analogy with the stream- 
wise structures of the mode A instability (see Williamson 1996). However, for X/D > 5.6, 
denoted as regime II (type B), we observe a beating phenomenon where the wake topology 
alternates between a mildly three-dimensional state similar to regime I and a highly 
three-dimensional state similar to regime II (type A). 

Finally, when the amplitude of the waviness is sufficiently large, we obtain a near-base 
region which is completely steady leading to a significant reduction in mean drag and the lift 
tending to zero. This region of maximal drag reduction is denoted by regime III and within 
this regime, there is no evidence of a Kärmän vortex wake. Once again we can identify two 
sub-regimes. In the first case, regime III (type A), the flow is completely steady and has 
only been observed for X/D < 5-6. It is in regime III (type A) that the most significant 
drag reduction occurs. The wake topology is similar to that shown in Figure 5(a). However, 
when X/D > 5-6, hairpin vortices are shed periodically from the almost steady near- 
base region. In this regime, defined as regime III (type B), a small unsteadiness appears 
in the near-wake due to the shedding of these hairpin vortices. We note that the wake 
topology of the hairpin vortices in regime III (type B) resembles that of a sphere at 
low Reynolds numbers [see Figure 5(b)]. It was shown that the smallest wave steepness 
W/X to force the flow into regime III (type A) occurs at around a value of X/D « 5-6. 
This wavelength has a similar length scale as the mode A transition of the wake of a straight, 
nonwavy square section cylinder and the primary spacing of same-sign vortices in a 
Kärmän vortex street. 

3.2. REYNOLDS NUMBER EFFECT 

The effect of the Reynolds number on the forces and wake topology of the wavy cylinder 
is investigated for the particular case of (X/D, W/X) = (5-6,0-167). The numerical simulations 
were performed over a range of Reynolds numbers from 10 to 500 and are compared with 
experimental data for the straight and wavy bodies up to a Reynolds number of 40 000. 
The results for the total drag coefficient against the Reynolds number are summarized in 
Figure 4. 

For the straight cylinder, at low Reynolds numbers the flow is steady and a pair of 
symmetric vortices forms in the near-wake. In this regime, the drag is relatively high and has 
a strong component due to skin friction from the boundary layer. For example, at Re = 10, 
the total drag coefficient is 3-20, 32% of which is due to wall shear stresses. As the Reynolds 
number is increased, the shear stress component of the total drag coefficient decreases and 
the length of the closed recirculating region increases; e.g at Re = 40, the total drag 
coefficient is reduced to 1-71 and only 16% is due to skin friction. 

At a critical Reynolds number Rei, the steady flow becomes unstable and bifurcates to 
a two-dimensional time-periodic flow, resulting in the well-known Kärmän vortex street in 
the wake. This first transition, known as the primary instability, is the result of a Hopf 
bifurcation. For the square-section cylinder, the experimental value for Ret reported in 
Sohankar et al. (1997) is Rei = 47 + 2, whereas previous numerical computations place the 
critical Reynolds number for the onset of vortex shedding near Rei = 51-2 (Sohankar et al. 
1998) and Rei = 53 (Kelkar & Patankar 1992), respectively. Beyond this critical Reynolds 
number, the drag coefficient deviates from the steady and symmetric curve as shown in 
Figure 4. An interesting flow pattern then develops on the top and bottom surfaces with 
increasing Reynolds number as shown in the simulations of Robichaux et al. (1999). In this 
work, they show that at low Reynolds numbers, the shear layers remain attached on the top 
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Hopf bifurcation (straight cylinder) 
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Figure 4. Drag coefficient against Reynolds number for the straight and wavy cylinders: •. straight cylinder, 
Re = 10,15,20,25, 30, 35, and 40 (steady flow); <, straight cylinder, Re = 70, 80, 100,120,140, and 150 (unsteady 
flow); ►, straight cylinder, Re = 200 - 10,000 (experiments from Okajima 1995); ■, straight cylinder at 
Re = 40000 (experiments from Owen 1997); O, straight cylinder with symmetry boundary condition on the wake 
centre line to promote steady flow at Re = 100, 150; O, wavy cylinder, Re = 10, 20,40, 60, 80, 100, 150, 200, and 

500; V, wavy cylinder at Re = 40000 (experiments from Owen 1997). 

and bottom surfaces. The shear layers then separate from the trailing edge, forming the von- 
Kärmän vortex street in the wake. As the Reynolds number is increased to around 
Re = 120, the shear layers separate from the leading edge but reattach a short distance 
downstream, thus forming small unsteady recirculating cells on the top and bottom 
surfaces. Finally, at around a Reynolds number of 150, the shear layers separate from the 
leading edge without reattachment. They also report that the two-dimensional wake 
becomes unstable to three-dimensional perturbations at around Re = 161, but the asso- 
ciated spanwise wavelength is not given. The onset of mode A for the square-section 
cylinder is given as Re = 162 ± 12. The lower bound of the onset of three dimensionality 
seems to be very close to the Reynolds number at which the flow separates from the leading 
edge without reattachment. From the experimental data of Okajima (1995), the total drag 
coefficient increases sharply from Re x 200. It should be noted that this trend does not 
occur for the circular cylinder and is probably due to the fixed leading edge separation 
points. It is not yet clear why there is a large drop in the drag coefficient after Re = 1000 but 
it would seem to be due to the shear-layer transition (Okajima 2000). Further increasing the 
Reynolds number leads to a monotonic increase in the drag coefficient. 

For the wavy body, the transition process is distinctively different. In the low Reynolds 
number regime, the drag coefficient is similar to that of the straight cylinder (see Figure 4). 
For example, at Re = 10, the total drag coefficient is 3-19, 32% of which is due to viscous 
shear stresses and at Re = 40, the total drag coefficient is 1-67 where 18% is due to skin 
friction. The wake topology is steady and symmetric which results in a net zero lift force. 
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Figure 5. Perspective view showing the three-dimensional wake of the wavy cylinder (A/D, W/X) = (5-6,0.1667) 
at (a) Re = 80, (b) Re = 100, (c) Re = 200, and (d) Re = 500. 

The drag coefficient follows the steady and symmetric curve shown in Figure 4. Beyond the 
critical Reynolds number for the onset of vortex shedding of the straight cylinder 
(Rei x 47), the three-dimensional wake remains steady and symmetric. The topology of the 
wake at Re = 80 is shown in Figure 5(a). The drag coefficient continues to follow the steady 
and symmetric curve until Re x 100. At around this critical Reynolds number, transition to 
unsteadiness occurs in the wake where the drag coefficient deviates from the steady and 
symmetric curve (see Figure 4). A staggered array of hairpin vortices emerge from the 
near-wake region as can be seen from Figure 5(b). The distinct structure of these hairpin 
vortices persists until Re = 200, after which smaller scale instabilities are induced as shown 
by Figure 5(d) at Re = 500. As can be seen, the wavy stagnation face has delayed the onset 
of unsteadiness to Re = 100 and the antisymmetric mode has changed from a Kärmän 
vortex street to a street composed of hairpin vortices, similar to the wake of a sphere at low 
Reynolds numbers. 

Defining drag reduction with respect to the drag level of the straight cylinder, at Re = 80 
the drag reduction is about 13%, whereas at Re = 100, 200 and 500, it is 16, 20 and 34%, 
respectively. It can be appreciated that the drag reduction at Re = 500 has substantially 
increased from that at Re = 100 and is comparable to the experiments of Owen (1997) at 
Re = 40000. The increase in the drag reduction with increasing Reynolds number is 
principally due to the fact that for a straight, nonwavy cylinder, the shear layers separate 
from the leading edge from Re « 170 whereas at Re = 100 the shear layers remain attached 
until they separate from the trailing edge. Therefore, the leading edge separation leads to 
a higher drag for the straight, nonwavy cylinder. However, from the numerical simulation at 
higher Reynolds numbers, the asymptotic level of the drag coefficient of the wavy cylinder 
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does not change significantly from that at Re = 100 (see Figure 4). Therefore, the higher 
drag reduction, at higher Reynolds numbers, is mainly due to the increase in the drag 
coefficient of the straight, nonwavy cylinder. 

3.3. THREE-DIMENSIONAL BLEED 

Considering Section 2.2, we can introduce an alternative interpretation of the waviness as 
the d'Alembert flow past a straight, nonwavy cylinder.The spanwise forcing term Az, given 
by equation (4), depends on the streamwise pressure gradient and the z-derivative of the 
shape of the waviness. The streamwise pressure gradient dp/dx will be large near the 
stagnation face and will always be positive. The forcing term Az will be positive between 
0 < z < A/2 and negative between A/2 < z < A. This forcing, therefore, sets up a spanwise or 
cross-flow velocity component, w, along the leading edge surface going from a position 
corresponding to the maximum towards a position corresponding to the minimum of the 
wavy cylinder. In Darekar & Sherwin (2001), it was shown that the streamwise forcing term 
Ax, given by equation (5), is mainly dominated by the term - 7c2(W7A)2sin2(27z:z/A)(l/p) 
{dp/dx), which is negative along the leading edge and reaches a maximum in the region of 
the inflection points. The streamwise forcing term, Ax, will thus slow down the two- 
dimensional u component of the velocity more significantly close to the inflection points. 

These observations motivated the interpretation of the wavy stagnation face as a combi- 
nation of promoting a cross-flow at the stagnation face and slowing down the flow near to 
the inflection points. To simulate this effect, the influence on the unsteady wake of a straight 
cylinder due to various forms of surface bleed has been investigated at a spanlength of 
A/D = 5-6 at Re = 100. Two types of bleed were imposed as boundary conditions on the 
cylinder surface: (i) a cross-flow bleed on the stagnation face, and (ii) a vertical bleed on the 
top and bottom surfaces. The following mathematical formulations were used for each of 
the three-dimensional forms of bleed: 

(i) cross-flow bleed on the stagnation face, wcr = 0-56 sin(27cz/A)(y - 0-5)(y + 0-5); 
(ii) bleed on the top and bottom surfaces, v,b = ± 0-01e"1000x2(l + 200 e~(z_2'8)2). 

The cross-flow bleed was specified on the whole stagnation face of the straight, nonwavy 
cylinder. The bleed has a sinusoidal variation in the spanwise z direction and a parabolic 
variation in the y direction. It reaches a local maximum of 0-14, i.e 14% of U„ at z = 1-4, 
4-2. The results showed that the near-wake was stabilized to a time-independent state. The 
wake topology is shown in Figure 6(a) and has strong qualitative similarities with that of the 
wavy cylinder in the steady regime [see Figure 5(a)]. The stabilization of the near-wake 
resulted in a drag reduction of about 15% and in a zero lift force. 

The bleed on the top and bottom surface was specified by modifying the velocity 
boundary conditions on the top and bottom surfaces to (u, v, w) = (0, ± vtb, 0). The distribu- 
tion is exponential in both the streamwise x and spanwise z directions. A maximum velocity 
of about 2 occurs at the midspan of the cylinder. The topology of the wake is shown in 
Figure 6(b) and has strong similarities to the unsteady flow past the wavy cylinder at 
Re = 100 [see Figure 5(b)]. The lift force dropped to nearly zero and the drag reduction was 
equal to about 11%. 

Current work is focusing on the minimum amount of bleed necessary to stabilize the 
near-wake. A comparison of this minimum amount of bleed will be done for the stagnation 
face cross-flow, the top and bottom surface bleed as well as the base bleed of the straight 
cylinder. It is anticipated that the stagnation face cross-flow will be the most effective means 
of stabilizing the near-wake as perturbations are introduced very early on in the shedding 
process and hence have a longer convective time to disrupt the shedding mechanism. 
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Figure 6. Perspective view showing the three-dimensional wake for the two forms of bleed: (a) on 
the stagnation face and (b) on the top and bottom surfaces. 

4. CONCLUSION 

It was shown that the wavy stagnation face delayed the onset of unsteadiness to Re « 100 
for the particular case of (X/D, W/X) = (5-6,0-167). In contrast to the standard von-Kärmän 
vortex street of a straight cylinder, the unsteady wake of the wavy cylinder is composed of 
a staggered array of hairpin vortices, which is similar to the wake of sphere at low Reynolds 
numbers. The drag was found to be substantially lower than that of a straight cylinder. This 
drag reduction increased with increasing Reynolds number. Alternative methods, based on 
three-dimensional forms of bleed, have been shown to suppress the von-Kärmän vortex 
street of a straight, nonwavy cylinder, leading to similar wake structures to that found for 
the wavy cylinder. 
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An experimental investigation has been carried out to measure the drag and vortex-induced 
vibration amplitudes of a circular cylinder, a circular cross-sectional body with a sinuous axis 
and a circular cylinder with hemispherical bumps attached. A wide range of Reynolds number 
has been studied, up to a maximum value of 105. Suppression of vortex shedding and drag 
reductions up to 47% have been observed for the body with a sinuous axis. Drag reductions of 
about 25% and suppression of vortex shedding have been recorded for the cylinder with bumps. 
VIV experiments over a range of the mass damping parameter from 2x10 2 to 5 have shown 
that amplitudes of oscillation for the wavy body and the cylinder with bumps still develop at 
low values of mass damping, even though shedding cannot be detected from the bodies when 
they are fixed. VIV can be suppressed at significantly lower values of mass-damping than 
required to stabilize a circular cylinder. © 2001 Academic Press 

1. INTRODUCTION 

VORTEX SHEDDING FROM BLUFF BODIES is a challenging area of fluid dynamics and it continues 
to present problems to designers in a number of key industrial areas. For example, the large 
drag loads and possible vortex-induced vibration (VIV) of pipes and long slender tubular 
members are important design issues in the offshore industry. The widespread use of bluff 
sections has stimulated an interest in finding ways to weaken or even suppress vortex 
shedding. One avenue of research has been to take a nominally two-dimensional bluff body 
and to apply some form of three-dimensional geometric disturbance to the basic form. 
Naumann et al. (1966) varied the separation position along a circular cylinder by attaching 
short lengths of wire fixed alternately at two angular positions across the span. It is reported 
that this suppressed vortex shedding. Following this idea of breaking the separation line, 
a number of researchers, including Tanner (1972), Rodriguez (1991) and Petrusma & Gai 
(1994), have studied the reduction of the drag of blunt-trailing-edge wings by introducing 
a segmented trailing edge. Drag reductions up to 64% were found. The work reported here 
continues this theme but relates to bluff bodies where the geometry has some spanwise 
perturbation with a sinusoidal form. 

In experiments carried out over the past few years it has been found that vortex shedding 
from bluff bodies can be weakened, and in some cases suppressed, when the flow separation 
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lines are forced to be sinuous. Three sets of experiments have been conducted: one using 
a blunt-based section with a wavy trailing edge (Tombazis & Bearman 1997), a second on 
rectangular cross-section bodies where the front face is wavy (Bearman & Owen 1998), and 
a third on bodies with a circular cross-section with constant diameter along the span and an 
axis that is sinuous (Owen et al. 1999). In all cases the introduction of the waviness is 
observed to reduce the drag and, for the rectangular and circular cross-sectional bodies, 
vortex shedding is suppressed if the ratio of peak-to-peak wave height, w, to wavelength, X, 
of the sinuous form is above a critical value. The effectiveness of modifying the separation 
line appears to be greatest when the ratio X/D of the wavelength to the body cross-flow 
width, D, is close to that of the mode A wavelength. This may or may not be a coincidence 
but it should be noted that vortex shedding can be suppressed across a wide range of 
Reynolds number, and not just in the regime normally associated with mode A. In the case 
of the wavy blunt-trailing-edge body, vortex shedding was not totally suppressed at the 
maximum wave steepness examined of 0-14, whereas for the other bodies von Kärmän-type 
shedding disappeared for values of w/X above about 0T. Hence it might be deduced from 
this that the wavy front face also plays a role in vortex shedding suppression. 

The experiments of Tombazis & Bearman (1997) were carried out to study three- 
dimensional features found in the wakes of nominally two-dimensional bluff bodies known 
as vortex dislocations. These are associated with spanwise changes in vortex shedding 
frequency and they provide a means by which vortices from adjacent cells, shedding at 
different frequencies, can join together. The occurrence of vortex dislocations was first 
investigated at low Reynolds numbers where the wake is unsteady but laminar [see for 
example, Williamson (1989)]. Bearman & Tombazis found that for a two-dimensional body 
at higher Reynolds numbers, dislocations appear apparently randomly in time and in 
spanwise position. In order to try to fix dislocation positions in the wake of a blunt- 
trailing-edge section they introduced a spanwise wavy trailing edge. It was found that the 
introduction of the waves fixed the dislocation positions but they also caused a further 
significant effect. It was observed that the base pressure increased as the wave steepness, 
w/X, increased. Increasing base pressure is associated with drag reduction and hence it was 
deduced from these observations that encouraging the formation of dislocations reduces 
drag. 

Bearman & Owen (1998) extended this work to rectangular cross-sectional cylinders with 
the front face normal to the flow. In order to generate a wavy separation line, the front face 
was machined into a sinusoidal form. For small values of w/X similar vortex dislocation 
patterns and drag reduction to those for the wavy trailing edge body were observed. 
However, when w/X was increased to 0-09, vortex shedding could not be detected. Drag 
reductions of over 30% were measured. Owen et al. (1999) took the research a stage further 
by studying how the flow around a circular cylinder changes if the axis is made sinusoidal. 
With the wavy axis in the plane of the flow they found similar features to those of the wavy 
rectangular sections, with vortex shedding suppression occurring for values of w/X above 
0T67. Distorting the axis of a circular cylinder may not necessarily generate wavy flow 
separation lines, but observations showed that the separation position did vary across the 
span. A common feature of the bodies where vortex-shedding suppression occurred is 
a wavy face onto which the free-stream flow impinges. 

One of the aims of this paper is to attempt to explain why the introduction of relatively 
small degrees of spanwise waviness should have such a large effect on von Kärmän vortex 
shedding. Also, it is of importance to know that waviness not only reduces drag but can also 
be used to reduce or even suppress VIV. One of the most widely used devices to suppress 
VIV, the helical strake, has the disadvantage that it increases drag. One obvious drawback 
of employing waviness is that it will be directionally sensitive, with perhaps little or no effect 
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when the body is orientated with the plane of the waves normal to the flow. It is proposed to 
show how some simple modifications to the geometry of a circular cylinder, based on ideas 
developed from studying wavy bluff bodies, may be used to reduce drag and to weaken and 
even suppress shedding. 

2. EXPERIMENTAL ARRANGEMENT 

Experiments have been carried out on slender bluff sections over a large range of Reynolds 
numbers from 10 to 340 000, using both air and water facilities. Insight into the structure of 
flows has been obtained from flow visualization studies at low Reynolds numbers in 
a towing tank 3 m long by 0-8 m wide and 0-6 m deep. Experiments at substantially higher 
Reynolds numbers in two low-speed wind tunnels with working sections 0-92 m by 0-92 m 
and 1-22 m by 1-37 m have shown that similar effects due to small spanwise waviness are 
present. Surface-pressure measurements and hot-wire anemometry studies were carried out 
in the smaller wind tunnel. The larger wind tunnel is equipped with a three-component 
balance and this was used for direct measurements of drag. PIV measurements of the wake 
structure of bluff bodies were also conducted in this tunnel. 

Experiments to measure response amplitudes of bluff bodies due to VIV were conducted 
in a water channel with a test section 0-61 m wide and 069 m deep. The maximum flow 
speed in the channel is about 0-3 m/s. Two important structural parameters to consider are 
damping ratio, (, and mass ratio, m*, where m* = msys/md and msys is the effective mass of the 
oscillating body and md is the mass of fluid it displaces. One of the advantages of working 
with water is that mass ratios can be kept low and in a similar range to that experienced by 
offshore structures. Low damping was achieved by mounting bodies from a double- 
pendulum suspension system situated above the test-section of the water channel. The 
pendulum, which is shown in Figure 1, was constructed using four arms with low-stiffness 
flexures at each end. The motion of an attached cylinder is predominantly in the horizontal 
plane and the vertical movement during a typical VIV experiment is extremely small. When 
discussing the parameters that control VIV, it is common to use the product of m* and ( to 
form the single combined mass-damping parameter. However, care must be taken when m* 
is small, because the magnitude of the fluid added mass becomes significant compared to 
msys and it can have a marked influence on the frequency at which the body oscillates. In the 
experiments, m*( was varied over the range 2 x 10"2 to 5 and the Reynolds number was 
varied between 103 and 104. Full details of all the facilities and the experimental techniques 
used are described by Owen (2000). 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

Low Reynolds number flow visualization results for a wavy circular cylinder, presented by 
Owen et al. (2000), show no evidence of regular Kärmän vortex shedding above a value of 
w/A of 0-167. Also, there is seen to be a periodic variation of the wake width across the span, 
with a wide wake behind the body where the axis is furthest downstream and a narrow wake 
where it is furthest upstream. In addition, there is evidence of longitudinal vortices in the 
wake which vary in sign in an alternate way across the span. Their senses of rotation are 
such as to induce the variation in wake width mentioned above. The origin of these vortices 
is thought to be in the skewed shear layers shed from the wavy body and the maximum 
strength of the longitudinal vorticity along the span is expected to be where the axis of the 
body is at the steepest angle to the free stream flow. This would provide a dependence of 
the flow on wave steepness, w/A, which is what is observed. Cross-flows generated on the 
attached flow part of the bodies with a wavy front face must also play a role in weakening 
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Figure 1. Schematic diagram of the double-pendulum system used for VIV experiments mounted 
above the water channel. 

vortex shedding. The magnitude of these cross-flows would again be expected to depend on 
wave steepness. While the precise mechanism of how this flow stabilizes the near-wake and 
suppresses vortex shedding will probably only be revealed by hydrodynamic stability 
analysis, it seems clear that the longitudinal vortices play a dominant role. 

Figure 2 shows the effect of wave steepness on the drag coefficient of a sinuous circular 
cylinder with a wavelength, X, of 7-5D and at a Reynolds number of 3-3 x 104. A large drag 
reduction of 47% is recorded when the wave steepness is just over 0-3, but even for w/1 of 0-1 
the drag reduction is more than 30%. At the higher wave steepnesses hot-wire measure- 
ments revealed no discrete frequency at the expected vortex shedding periodicity. From 
results reported by Roshko (1954) on the effect of long splitter plates on circular cylinder 
flow, it is to be expected that drag reduction should accompany vortex shedding sup- 
pression. Changing the incidence of the flow approaching a wavy cylinder, the drag 
coefficient increases back to almost the same value as that for a straight cylinder when the 
incidence reaches 90°. 

While there may be important applications for wavy cylinders when the flow is unidirec- 
tional, such as for cylinders in tidal flows or for heat exchanger tubes, there is also 
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Figure 2. Measurements of drag coefficient versus wave steepness for a sinuous circular cylinder, 
A/D = 7-5, Re = 3-3 x 104. 

Figure 3. A view of a circular cylinder fitted with a spiralling arrangement of surface control 
bumps. Angular separation = 45°, longitudinal pitch of spiral = ID. 

a requirement for VIV suppression and drag reduction of cylinders in multi-directional 
flows. Hence, how can the ideas discussed above be used to suppress VIV when the direction 
of the approach flow is unknown? In order to reproduce some of the effects of a wavy 
cylinder, hemispherical bumps or caps were attached to the forward-facing side of a straight 
cylinder at a similar spacing to the wave crests on the wavy cylinders. These were found to 
reduce the drag and to suppress vortex shedding but they are only effective for a relatively 
small range of flow incidence. The next step was to apply the bumps in a spiral pattern 
around the cylinder with a constant longitudinal spacing and an angular separation of 45°. 
A view of a typical arrangement of bumps is shown in Figure 3. Measurements of CD for 
a body with a spacing between bumps of ID, versus incidence are shown in Figure 4 for 
a series of Reynolds numbers between 2 x 104 and 105. At 0° incidence a row of bumps is 
normal to the oncoming flow and since the bumps are distributed in a regular pattern it was 
only necessary to make measurements up to an incidence of up to 22-5°. It can be seen from 
Figure 4 that the addition of bumps reduced CD by 25%, where CD is based on the diameter 
of the plain cylinder. 

Figure 5 shows three vorticity fields obtained from velocity measurements acquired using 
PIV at a Reynolds number of 2-7 x 104. One is for a spanwise position where the bumps are 
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Figure 4. The effect of incidence on the drag of a circular cylinder fitted with a spiral arrangement 
of surface bumps: •, circular cylinder;   x, Re = 2 x 104; D, Re = 4 x 104; A, Re = 6 x 104; O, 

Re = 2 x 104; + , Re = 105. Angular separation = 45°, longitudinal pitch of spiral = ID. 

situated at + 90°, another is for a position where bumps are at 0° and 180° and the 
third is for a plain cylinder. In both cases with bumps there is no evidence of 
Kärman-type vortex shedding and the flow has many similar features to that found around 
a wavy cylinder. Having demonstrated some drag reduction and suppression of vortex 
shedding the next stage in the investigation was to study how susceptible these cylinders are 
to VIV. 

Maximum transverse response amplitude 7max, divided by D, is shown plotted in Figure 
6 as a function of reduced velocity Vr, where Vr = nD/U and n is the oscillation frequency of 
the body in still water and U is the flow velocity. Two sets of results are plotted: one for 
a plain circular cylinder and the other for a. cylinder with an array of bumps along the 
leading edge at a spacing of 1-5D. The height of the bumps was equal to 25% of the diameter 
of the cylinder. The Reynolds number range was from 1650 to 7500 and m*( = 3-6 x 10" 2. 
The plain cylinder results are similar to those found by other researchers and at first glance 
the results for the cylinder with bumps are disappointing. They indicate that when the body 
is flexibly mounted it is able to detect a very weak force fluctuation at a shedding frequency 
and that as it responds the excitation increases. The transverse oscillations of the cylinder 
with bumps developed extremely slowly compared to the plain cylinder and achieved 
a maximum amplitude about 25% lower. Hence it appears that with a relatively small 
amount of additional damping it may be possible to significantly reduce the response. This 
behaviour is similar to that found for cylinders with helical strakes which are effective at 
suppressing VIV for cylinders in air but still show a response at the lower mass damping 
parameters typical for water. 

Figure 7 shows 2YmJD plotted against m*C for a series of body geometries. 7max is the 
maximum amplitude recorded over a range of reduced velocity that more than spans the 
expected lock-in regime. The Reynolds number for maximum response in all cases is about 
4000 and m* is held constant at 14-3. Results are shown for a plain cylinder, a wavy cylinder 
(w/A = 0-167) and cylinders with small, medium and large bumps. The heights of the three 
sets of bumps are, respectively, 25%, 33% and 50% of the diameter of the cylinder. The 
largest suppression of VIV is observed for the wavy cylinder, but the results for the cylinders 
with bumps are very close, with the cylinder having small bumps being almost as effective as 
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Figure 5. Nondimensional vorticity fields obtained using PIV in the wake of a circular cylinder 
fitted with surface bumps. The upper plot is from a spanwise position where the bumps are 90° to the 
flow, the middle plot is where the bumps are in-line with the flow and the lower plot is a plain circular 
cylinder. For bumps: angular separation = 45°, longitudinal pitch of spiral is equal to  ID, 

Re = 2-7 x 104. 

the cylinders with the two other sizes of bumps. It should be noted that no detailed attempt 
has been made to optimize the shape of the bumps, or their distribution, but the results 
demonstrate the potential for using this idea for suppressing VIV and reducing drag. 
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Figure 6. Maximum transverse response amplitude of an oscillating cylinder: •, circular cylinder; 
A, cylinder with control bumps fitted to leading edge at a spacing of 1-5D. m% = 3-6 x 1(T2' 

Re = 1650-7500. 

g  0.15 

0.00 

Figure 7. The effect of mass damping parameter (m*£) on the maximum transverse response 
amplitude of various bodies: •, circular cylinder; + , sinuous cylinder (wß = 0-167); and cylinders 
fitted with increasingly large bumps to the leading edge: O, 1-25D; A, 1-50D; D, 2-OOZ). m* = 14-3 

4. CONCLUSIONS 

It is shown that sizeable reductions in drag can be achieved when the separation lines on 
a bluff body are forced to be sinuous. Drag reductions up to 47% are recorded for a circular 
cross-sectional body with a wavy axis. Above a certain value of wave steepness, regular 
vortex shedding can no longer be detected. The near-wake width is found to vary across the 
span in a sinusoidal way and longitudinal vorticity is introduced into the wake. Similar 
effects can be induced on a circular cylinder by attaching hemispherical bumps at regular 
intervals along the attachment line. Dependence on the angle of incidence can be removed 
by attaching the bumps in a spiral pattern. Measurements of VIV amplitudes show that 
a transverse response is recorded for the cylinder with bumps at low values of m*£, even 
though vortex shedding could not be detected for the same body when it was fixed. 
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However, the excitation is weakened and VIV can be totally suppressed for a cylinder with 
bumps at substantially lower values of m% than for a circular cylinder. 
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The physical nature of the initial transition to three-dimensionality of flow past a circular 
cylinder has been the subject of considerable debate in the literature. Of several proposed 
mechanisms, the possibility of classification as an elliptical instability is re-examined in this 
article. Detailed Floquet analysis of the transition shows clear evidence of the growth of an 
elliptic instability in the forming vortex cores followed by amplification by the strong strain 
field in the hyperbolic region between the forming and shed vortices. In fact, it appears that the 
wake immediately behind the cylinder shows distinct signs of a cooperative elliptic instability as 
found previously for interacting counter-rotating vortices. Further downstream, after the 
vortices have been shed into the wake, the instability again grows in the cores. Three- 
dimensional simulations provide a semi-quantitative estimate of the "elliptic content" of 
instability, and confirm that elliptic instability seems to be dominant in the initiation and 
maintenance of the 3-D perturbation. © 2001 Academic Press 

1. INTRODUCTION 

THE TWO-DIMENSIONAL WAKE of a circular cylinder undergoes a hysteretic transition to 
three-dimensional flow at a Reynolds number Re = UD/v (where U is the free-stream 
velocity, D the cylinder diameter, and v the kinematic viscosity) of approximately 190. The 
initial instability causing this transition gives rise to the first of a sequence of two shedding 
modes, now generally referred to as modes A and B, which lead to the rapid evolution to 
fully turbulent flow [see, e.g., Williamson (1996a) and Henderson (1997)]. These modes have 
distinct unstable spanwise wavelength bands and different topologies. There are strong 
indications that the equivalent of mode A is the initial transition mode for a range of 
two-dimensional cylindrical bodies, from square cylinders (Robichaux et al. 1999) to long 
plates with aerodynamic noses (Hourigan et al. 2001). In addition, modes with the corre- 
sponding two distinct spatio-temporal symmetries have been observed in plane wakes both 
experimentally and numerically (Meiburg & Lasheras 1988). Figure 1 shows visualizations 
of modes A and B in the cylinder wake, obtained from direct numerical simulations (see 
Section 3.2). 

0889-9746/01/040607 + 10 $35.00/0 © 2001 Academic Press 
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Floquet stability analysis indicates that mode A first becomes unstable for a spanwise 
wavelength of X = AD at Re = 190 (Barkley & Henderson 1996). This is consistent with 
experimental flow visualizations of Williamson (1988), which show the spanwise wavelength 
to be between 3 and 4D. Interestingly, the unstable band of wavelengths becomes broad as 
the Reynolds number is increased, which may be the underlying cause of dislocations in 
wakes as observed by Williamson (1992,1996a, b). At Re = 260, the Floquet analysis shows 
that the two-dimensional wake becomes unstable to a second shedding mode, mode B 
(Barkley & Henderson 1996). The critical wavelength in this case is about 0.8D, again 
consistent with experimental observations of Williamson (1988). In a real flow, this 
transition occurs at a lower Reynolds number (Williamson 1988), because the development 
of mode A shedding substantially alters the assumed two-dimensional base flow, so that by 
Re = 230-240 the wake shows clear evidence of both modes, and of their non-linear 
interaction. Unlike mode A, mode B appears to remain unstable over a relatively small 
wavelength band, even at much higher Reynolds numbers. The remnants of mode B can be 
observed both visually and through spanwise cross-correlation measurements at 
Re = 1000, when the wake is certainly fully turbulent (Wu et al. 1996). 

Despite the large number of experimental, theoretical and numerical studies of this 
3-D transition, the precise physical nature of the secondary instabilities is not 
fully understood and has generated much debate. Several possible mechanisms have 
been proposed. Leweke & Provansal (1995) used a Ginzburg-Landau equation to 
model the wake as a collection of coupled oscillators. They proposed that the transition 
was due to a Benjamin-Feir instability found in such systems of oscillators. This was 
consistent with experiments into the dynamics of the wake; however, this instability 
has a vanishing spanwise wavenumber inconsistent with the observations of Williamson 
(1988), and numerical predictions of Barkley & Henderson (1996) of a finite wavenumber. 
Brede et al. (1996) suggested that the strong curvature of the streamlines in the near-wake, 
and especially of the braid regions between the rollers, was consistent with a centrifugal 
instability. However, no conclusive evidence was supplied to support this speculation. 
Karniadakis & Triantafyllou (1992) suggested that the route to turbulence was through 
period-doubling of the mode B instability. This conclusion was based on numerical 
computations on a narrow spanwise domain which suppresses mode A, whereas in a real 
flow its existence alters the evolution, leading to a faster (and different) route to turbulence 
(Hourigan et al. 1995). 

Williamson (1996ft) realized that the two distinct instabilities should be associated with 
two different length-scales of the two-dimensional wake flow. The two obvious wake 
length-scales are the core size of the Kärmän vortices and the width of the braids between 
the rollers. He suggested that mode A instability was associated with an elliptic instability of 
the vortex cores, and that mode B instability was associated with an instability of the braid 
region (which includes the braid shear layer within the near-wake vortex formation region). 
Leweke & Williamson (1998&) showed that elliptic instability theory predicts the approxim- 
ate spanwise wavelength of the mode A instability and is consistent with both the topology 
and the waviness of the core vortices. Henderson (1997) was critical of this proposed 
mechanism for two main reasons. The numerical simulation of the Floquet mode indicated 
that the instability is complex, showing strong growth both inside and outside the vortex 
cores, and hence it would not seem reasonable to classify it in terms of a simple instability of 
an idealized flow. The primary objection, however, was that the mode appears to have the 
largest amplitude outside the region in which elliptic instability theory indicates it should 
grow. 

In this paper, we present further evidence that the principal physical origin of mode 
A instability can be attributed to an elliptic instability of the vortex cores. 



Figure 1. Visualizations of mode A (left, Re = 210) and mode B (right, Re = 250) shedding in the cylinder wake. 
The green and blue isosurfaces represent positive and negative streamwise vorticity. The flow is from left to right. 

The front of the circular cylinder is shown at the left of each plot. 

Figure 3. (a) Contour plot of the perturbation spanwise vorticity corresponding to the Floquet mode with 
spanwise wavelength of AD at Re = 190. (b) Stretching directions of the local strain. The heavy blue lines are 
indicative of the mean stretching direction through the vortex cores. In both plots, the positions of the wake 

vortices are indicated by the red lines marking vorticity levels of + 0.2U/D. 
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2. REVIEW OF THE ARGUMENTS 

The theory of elliptic instability has been developed by Pierrehumbert (1986), Bayly (1986), 
Landman & Saffman (1987), Waleffe (1990) and others. In its basic form it considers the 
somewhat idealized case of two-dimensional flow with elliptic streamlines, which are 
generated by a superposition of a solid-body rotation with constant vorticity co, and plane 
strain of magnitude e. The flow is (i.e., the streamlines are) elliptic if the eccentricity 
parameter ß = 2e/\co\ is less than 1, and hyperbolic if ß > 1. 

It has been shown by various authors, that such unbounded linear flows are three- 
dimensionally unstable for all values of ß, except ß = 1 (plane Couette flow), which is 
marginally stable. The mechanism of instability is an amplification of inertial waves in the 
rotating frame of reference of the base flow through a resonant interaction with the strain 
field. For inviscid flow, the growth rate at of the most unstable perturbation is given by 

f(ß) &(1 ßm)n   for 0 < ß < 1 (elliptic flow), 

= y/l — ß~2     for ß > 1 (hyperbolic flow). 
(1) 

The approximate expression for the elliptic growth rate, with m = 2-811 and n = 0-3914, 
was computed by a least-squares fit of this functional form to the numerical result presented 
by Landman & Saffman (1987). The expression for the hyperbolic instability are given by 
Lagnado et al. (1984) and Lifshitz & Hamieri (1991). Importantly, although the growth rate 
depends on the orientation of the three-dimensional perturbation wave vector, it does not 
depend on its magnitude; i.e., all wavelengths X are equally unstable. Also note that the 
growth rate is directly proportional to the magnitude of the strain. 

Of course, the wake flow behind a circular cylinder is not an inviscid unbounded linear 
flow. As shown in Figure 2, the wake consists of finite regions of elliptic flow (primarily the 
Kärmän vortices), and regions of hyperbolic flow (primarily the braid regions between the 
vortices). It is known, however, from studies by Waleffe (1990) and Leblanc & Godeferd 
(1998), that there exist localized modes of elliptic and hyperbolic instability that would fit 
into these regions and effectively "see" a uniform elliptic or hyperbolic flow. The finite core 
size of the Kärmän wake vortices effectively imposes a length scale (the core diameter, which 
is of the order of D) on the elliptic instability. This, in turn, leads to an effective upper limit 
on the spanwise wavelength because the length scales in the cross-stream plane and 
spanwise direction are coupled. [Recent comprehensive accounts on elliptic instability in 
finite-size vortices in a small strain, i.e. with ß < 1, are given by Eloy & Le Dizes 
(1999,2001).] In addition, the influence of viscosity imposes a lower limit on the allowable 
spanwise wavelengths. It was shown in Leweke & Williamson (1998b) that the expected 
spanwise wavelength of an elliptic instability of the Kärmän vortices is X x 3D, given 
estimates of the average value of ß ( « 0-6, which is relatively high), and estimates of the 

Figure 2. Relation of elliptical flow regions (ß < 1, shown in grey) to the wake vortices (solid lines). The 
non-elliptic regions are hyperbolic regions (where the strain dominates). 
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vortex core diameter from direct numerical simulation of the two-dimensional flow. This is 
respectably in line with the observed experimental determination of X = 3-4D and the 
Floquet analysis of Barkley & Henderson (1996) (X = AD at onset). The corresponding 
growth rate can also be evaluated, again using estimates from DNS of the various 
dependent parameters. In particular, the strain rate was measured to be sD/U x 1 at the 
center of the near-wake Kärmän vortices. The estimated viscous growth rate of elliptic 
instability in the cylinder wake around Re = 200 is oD/U x 0-4 [see Leweke & Williamson 
(19986) for more details on these estimates]. 

Other strong supporting evidence is the apparent existence of invariant stream tubes as 
indicated by dye visualizations, surrounding the vortex cores, which remain unperturbed 
despite strong internal waviness of the cores (Leweke & Williamson 1998ft). This peculiar 
spatial structure is a characteristic feature of the elliptic instability perturbation. 

3. NEW RESULTS AND DISCUSSION 

In this section, we shall present and interpret some new evidence on the nature of the initial 
instability from well-resolved Floquet stability analysis and direct numerical simulations of 
the transition. 

3.1. FLOQUET ANALYSIS OF MODE A TRANSITION 

Floquet analysis determines three-dimensional stability of a periodic two-dimensional base 
flow by solving the linearized Navier-Stokes equations for the perturbation velocity and 
pressure fields. The present implementation is similar to that described in Barkley & 
Henderson (1996). The aim is to determine the growth of spanwise sinusoidal perturbations 
over one shedding period, as a function of Reynolds number and wavelength. The stability 
is determined by the Floquet multiplier, the multiplication factor connecting the amplitude 
of a given mode from one cycle to the next. When a multiplier exceeds unity, the 
corresponding mode becomes unstable. As determined by Barkley & Henderson (1996), the 
first Floquet multiplier becomes greater than 1 at the transition Reynolds number of 190, 
with a three-dimensional unstable mode of wavelength X = AD. 

Figure 3(a) shows the Floquet instability mode at a certain time in the shedding cycle for 
Re = 190 and for a Floquet wavelength of AD. For these parameters, the corresponding 
Floquet multiplier was determined to be approximately unity, consistent with the analysis 
of Barkley & Henderson (1996). It is this instability mode that is responsible for the 
transition to three-dimensional flow. In effect, the saturated Floquet mode corresponds to 
mode A. 

The plot shows the perturbation spanwise vorticity. Several features of the flow have 
been marked. Immediately downstream of the cylinder, the wake shows local vorticity 
distributions reminiscent of the pattern characteristic of elliptic instability. The 
initial vortex structure in the lower half of the wake, shows the separation of positive 
and negative perturbation vorticity in the direction of the principal axis of strain [see 
Figure 3(b)], corresponding to a movement of the centre of the forming roller in 
the same direction, as is expected for elliptic instability. On the top half of the wake, there is 
another separation of positive and negative vorticity, again aligned with the strain field. The 
two localized perturbations together appear to be similar to the cooperative elliptic 
instability of two interacting counter-rotating vortices (Leweke & Williamson 1998a). In 
particular, they show the same topology and alignment with the local strain field. At this 
stage of vortex formation, both local perturbations are embedded in elliptic regions of the 
flow. 
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Figure 4(a) shows a greyscale plot of the local growth rate of the instability calculated 
using results from Landman & Saffman (1987). The vorticity and strain distributions are far 
from the constant values assumed in this study, nevertheless, the distribution is suggestive 
that the elliptical regions shown in Figure 3(a) are likely to be (elliptically) unstable. 

The magnitude of the local strain is given in Figure 4(b). Interestingly, apart from the 
separating shear layers attached to the cylinder, the strain is large in the hyperbolic region 
between the two elliptic regions in the top half of the wake at the rear of the cylinder. This is 
important because the inviscid growth rate roughly scales with the strain rate, so high strain 
is an indication of high growth rates for both elliptic and hyperbolic instabilities. 

Figure 5 shows a sequence of the images of the development of the spanwise vorticity 
perturbation close to the back of the cylinder. Initially, the perturbations develop in each 
elliptic region resulting in the generation of positive and negative perturbation vorticity on 
each side of the core centre. This is indicative of the movement of the core in the direction of 
principal strain as occurs for elliptical instability. For both the finite-size vortex examined 
by Waleffe (1990), and the cooperative elliptic instability studied by Leweke & Williamson 
(1998a), the perturbation growth (at least for a reasonable time) is limited to the elliptical 
regions of the flow. This is not true in this case. Here, although the initial development of the 
instability occurs in the forming vortex cores, the individual perturbations merge and grow 
strongly between the elliptical regions. This is not surprising as the region between the 
forming vortex structures, and especially towards the downstream limits of the structures, is 
strongly strained as can be seen from Figure 4(b). It appears that this high strain rate leads 
to strong amplification of the perturbation. As the merged perturbation is advected 
downstream, it appears to lag behind the advected vortex cores. This is probably due to 
a combination of two factors: (i) the mean wake velocity defect of the perturbation on the 
side of the cores closer to the wake centre line is advected downstream less quickly than the 
more off-centred parts or the cores themselves; (ii) the instability is preferentially amplified 
in the highly strained hyperbolic region between vortex structures from the same side of the 
wake. The end result is that, after the vortex has been shed into the wake, the maximum 
amplitude of the instability is in the braid regions rather than the vortex cores. This 
maximal amplitude occurring between the forming vortices and in the braid regions was 
noticed by Henderson (1997), and helped lead to the conclusion that the instability should 
not be classified as elliptic. It needs to be pointed out that unless resolution is adequate and 
the contour levels are chosen carefully, the initial development of the instability in the core 
regions can easily be overlooked. 

As the vortices move further downstream, out of the formation region, they maintain 
their alignment and shape to a large extent and so are ideal candidates for a second elliptic 
instability. Initially, they are relatively perturbation-free, but the background perturbation 

(a) (b) 

Figure 4. Contour plots of (a) the viscous growth rate predicted from elliptic instability theory (Landman 
& Saffman 1987), and (b) the strain magnitude showing that the strain maintains a high value in the hyperbolic 

region (between the two elliptic regions in the top half of the wake, immediately behind the cylinder). 
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Figure 5. Development of the instability during the shedding process. Relative to the first (a), the subsequent 
images (b-f) are 0.04, 0.08, 0.12, 0.24 and 0.32 shedding periods later, respectively. 

field leads to the rapid development of elliptic instability in the cores. Although the cores, by- 
no means, have constant local vorticity and strain fields, they clearly show a perturbation 
field consistent with the vorticity distribution expected from elliptic instability. This rapid 
growth only occurs for a short time. Approximately one period further downstream, viscous 
growth rate calculations indicate that the instability is only marginally unstable. This is 
consistent with the observed development shown in Figure 3(b) (and further downstream). 

It is possible to estimate the growth rates for the initial cooperative and the downstream 
elliptic instabilities from the simulations. This was done by measuring the rate of change of 
the circulation in each half of the bipolar spanwise perturbation vorticity of the cores over 
approximately one quarter of a shedding cycle. The line integral defining this circulation 
was evaluated numerically for at least five consecutive snapshots in time spaced 0-05 cycles 
apart. For the initial cooperative core instability, and downstream elliptic core instability, 
the growth rate was calculated to be aD/U = 0-39 and 0-42, respectively. Although there is 
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some uncertainty in these estimates, they are in good agreement with the theoretical 
estimate oD/U x 0-4 given above. 

In summary, an interpretation of the evidence is that there are two elliptic instabilities, 
contributing to the mode A transition. The first occurs immediately at the back of the 
cylinder as the Kärmän vortices are forming, and the second further downstream as the 
vortices are shed into the wake. Although the first instability does not persist in the elliptic 
region, and appears to be amplified in the hyperbolic region, it seems likely that the 
spanwise wavelength is selected according to the scale of the Kärmän vortices in line with 
elliptic instability theory. Both when the perturbation is initially forming in the core regions, 
and when it is undergoing amplification in the hyperbolic region, it appears that the growth 
is due to the action of the strain field. This is consistent with the physical mechanism 
responsible for both elliptic and hyperbolic instability. 

3.2. THREE-DIMENSIONAL DIRECT NUMERICAL SIMULATION 

As further support for the importance of the elliptical nature of the instability, direct 
numerical simulations were performed. The same three-dimensional spectral/spectral-ele- 
ment code used for previous wake transition simulations (Thompson et al. 1996) is used 
here. Spectral elements are used in the cross-stream planes and a Galerkin Fourier 
expansion in the spanwise direction. Care was taken to ensure adequate resolution and 
domain size to capture the essential physics of the mode A transition. However, due to space 
limitations, these validation studies are not described here. The spanwise domain size was 
chosen to be AD to approximately match the most unstable wavelength of the spanwise 
mode at transition. This limits the possible wavelengths represented by the Fourier 
expansion to be 4D/n (n = 1, 2, ...). Of these wavelengths only X = 4D is unstable at the 
Reynolds number of the simulations. 

A three-dimensional simulation of mode A at Re = 200 was started by extending the flow 
field from a previous two-dimensional simulation to the three-dimensional domain. To 
initiate the development of three-dimensionality, the field was perturbed by adding random 
noise at a relative level of 10"4 to the velocity field. The flow was then evolved for sufficient 
time (approximately 10 shedding cycles), so that it effectively consisted of the two-dimen- 
sional base flow plus the most unstable Floquet mode. At this stage, the relative amplitude 
of perturbation field is still very small and the evolving flow is well within the linear regime 
where the growth is governed by the Floquet multiplier. 

At this point in the temporal development of the mode A flow, the perturbation field was 
decomposed into two mutually exclusive components. The first perturbation field is only 
nonzero where the two-dimensional flow (shown in Figure 2) is elliptic (ß < 1), and the 
second where it is hyperbolic (ß > 1). From these two perturbation fields, two three- 
dimensional flow fields were constructed by adding the spanwise-averaged (two-dimen- 
sional) base flow to the elliptic and hyperbolic perturbation fields, respectively. Thus, the 
first flow field contains the elliptic part of the perturbation, while the second contains the 
hyperbolic part. This split-up was performed at a random time in the shedding cycle. The 
results that follow may, to a certain degree, depend on the choice of this time, a point which 
was not investigated further so far. (Formally, regions with ß < 1 may also develop 
instabilities linked to centrifugal effects. However, no attempt was made here to further 
isolate these effects from those of the elliptic instability.) 

Using the two fields as initial conditions, the flow was evolved for several more shedding 
cycles. Figure 6(a,b) show isosurface visualizations of the perturbation spanwise vorticity 
after 2-4 shedding cycles, for the two initial fields. The isosurface level is the same in both 
cases. These visualizations show that the vorticity field that has evolved from the initially 
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Figure 6. Isosurface visualization of the perturbation spanwise vorticity after removing (a) the hyperbolic or (b) 
the elliptic component of the Floquet mode and evolving the flow for 2.4 shedding periods. 

elliptic field recovers towards the complete Floquet mode much more quickly than the 
initially hyperbolic one. In particular, starting from the "elliptic" conditions, the perturba- 
tion in the hyperbolic braids, initially set to zero, reappears very rapidly. On the contrary, 
with the "hyperbolic" initial field, i.e., in the absence of the elliptic core deformations, the 
perturbations in the braids actually decrease in the first few cycles of the simulation. Thus, it 
appears that the elliptic instability of the vortex cores in the wake formation zone has 
a dominant influence on the development of the instability. 

The "degree of ellipticity" can be approximately quantified through the following argu- 
ment. Let $o, $1, ®2> • • • be the Floquet modes of the linearized Navier-Stokes equations, 
where the modes have been ordered according to magnitude of the eigenvalues (the Floquet 
multipliers) from largest to smallest. In particular, <D0 corresponds to the only growing 
mode, i.e., the one responsible for the mode A transition. To form the two initial fields, this 
Floquet mode is split into two mutually exclusive components <S>e (elliptic) and Q>h (hyper- 
bolic): O0 = $e + <DÄ. We can now expand these two components in terms of all the Floquet 
modes: 

<De = £«;(]>;   and   0Ä = £y,*,. (2) 

From the definition of <5e and 0>fc the following relationships exist between the expansion 
coefficients: <x0 + y0 = 1 and a; + y( = 0, for i > 0. Effectively, a0/y0 determines the ratio of 
elliptic to hyperbolic "contents" of the growing Floquet mode. After each shedding period, 
the amplitude of each Floquet mode is multiplied by its Floquet multiplier, i.e., after many 
shedding cycles the perturbation evolves towards <£0, the multipliers of the other modes 
being less than 1. Thus, the ratio a0/y0 is given by the ratio of the amplitudes of the two 
growing perturbations starting from the elliptic and hyperbolic conditions described above, 
after the same number of periods. In the present simulations, this ratio was measured eight 
shedding cycles after initialization, which is sufficient to damp out the contribution from the 
stable Floquet modes (<D„ i > 0), whose multipliers are all smaller than 0-2 at Re = 200 
(Barkley & Henderson 1996). The result is a0/y0 = 2-03. In this sense, the Floquet mode 
responsible for mode A transition may be characterized as being about two-thirds elliptic 
and one-third hyperbolic. 

4. CONCLUSIONS 

It is useful, where possible, to attribute a flow transition to a simple physical mechanism 
applicable to idealized flows, because it aids with providing a physical understanding of the 
transition. This is valuable for interpreting other related (or unrelated) transitions. It is with 
this aim that we have attempted to interpret the transition to three-dimensionality for flow 
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past a circular cylinder. Importantly, there is now considerable evidence that the same 
transition scenario applies to a whole range of two-dimensional body geometries. Certainly, 
the transition is complex, the instability is not restricted to the forming vortices and the 
Kärmän vortices in the wake, and even within the cores the ellipticity parameter is far from 
constant. In addition, linear stability analysis predicts that the unstable mode grows as 
a whole, rather than as a set of effectively decoupled regions with their own local physical 
instabilities triggering instabilities in other regions. Nevertheless, the evidence presented in 
this paper shows that the first instability to form as the fluid advects downstream past the 
cylinder occurs in the forming vortex cores, with a growth rate and spanwise wavelength 
close to those predicted by idealized elliptic instability theory. This initial instability shows 
distinct features similar to the cooperative elliptic instability found by Leweke & William- 
son (1998a) for two counter-rotating vortices. Because of the complexity of the flow, it 
appears that the nascent perturbation is amplified in the highly strained hyperbolic region 
between forming vortices, leading to the observed high perturbation amplitudes in the 
braids. A second elliptic instability develops in the cores of the fully formed Kärmän 
vortices further downstream. Direct numerical simulations, carried out to analyse the 
contributions of elliptic and hyperbolic flow regions to the three-dimensional transition, 
support the interpretation that the elliptic instability is dominant in the initiation and 
maintenance of the mode A perturbation. 
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This paper discusses the effect of a small control cylinder on the transverse force (lift) on a large 
primary cylinder when the control cylinder is placed at select locations in the shear layer 
emanating from the primary cylinder. We have conducted both CFD and flow-visualization 
studies of this situation for Reynolds numbers of 100, 1000, and 3000. A 2-D Large Eddy 
Simulation was used in the CFD study to include the effects of wake turbulence. The CFD 
results show that the LES model predicts essentially an elimination of the transverse force on 
the primary cylinder for an appropriate placement of the control cylinder. The results also show 
that the drag on the primary cylinder is reduced. Our results, both from computation and flow 
visualization, indicate that the placement of a control cylinder has a noticeable influence on the 
drag and lift on the primary cylinder. © 2001 Academic Press 

1. INTRODUCTION 

VORTEX SHEDDING from bluff bodies is a recognized phenomenon since the days of Leonardo 
da Vinci. One effect on, say, a circular cylinder is to cause the instantaneous force acting on 
the cylinder to vary, with time, which can cause vibration of the cylinder. This vortex-induced 
vibration (VIV) is the cause of at least three troublesome situations: fatigue of the cylinder due 
to sustained oscillations, possible impact with adjacent cylinders due to VIV, and possible 
extreme buffeting of trailing cylinders due to shed vortices from the upstream cylinder. 

There are several ideas that have been pursued to influence, either to minimize or 
eliminate, vortex shedding and, thus, to control the effects of vortex shedding. These ideas 
fall into either of two categories: active control and passive control. We will discuss only the 
passive-control devices in this paper. 

Zdravkovich (1997) presents a discussion of several of the passive control devices: the 
perforated shroud which has the effect of influencing the base pressure; a splitter plate which 
prevents communication between the opposing sides of the wake; and helical strakes which 
have the effect of destroying the longitudinal coherence in the vortex shedding. 

A fourth passive control device is the placement of a second, and smaller, cylinder in the 
wake of a large cylinder, which will be the focus of this study. The smaller cylinder (the 
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control cylinder) has the effect of influencing the rollup of the shear layer from one side of 
the larger cylinder (the primary cylinder), i.e., the side of the primary cylinder near which the 
control cylinder is placed. Several authors have discussed this concept from both experi- 
mental and numerical points of view. Experimentally, this problem has been studied by 
Sakamoto et al. (1991), who used a square prism as the primary cylinder. They found that 
a close proximity configuration led to significant reductions of the fluctuating lift and drag 
on the primary cylinder. Igarishi & Tsutsui (1991) used a control cylinder to reduce the drag 
and lift on their primary cylinder. They explained their results by saying that the control 
cylinder provided a turbulent jet that attached itself to the near side of the wake of the 
primary cylinder and prevented the traditional vortex-shedding pattern from developing. 
Sakamoto & Hanui (1994) studied numerous different configurations of primary and 
control cylinders at a Reynolds number (Re) of 6-5 x 104. Their experimental results showed 
that the maximum reduction of the drag and lift occurred when the control cylinder was 
placed at 120° from the stagnation point. Strykowski & Sreenivasan (1990) did both an 
experimental and numerical study of this same problem for Re = 100, which is in the range 
of a 2-D flow. They found that the control cylinder had a strong influence of the drag and lift 
on the primary cylinder. They attributed the drag and lift reductions to the control cylinder 
diffusing concentrated vorticity and a small amount of fluid into the wake of the primary 
cylinder where the flow was influenced by removing some of the unsteadiness from the wake. 

2. ANALYSIS 

We will treat the flow as 2-D and take the fluid to be incompressible. The governing 
equations will be expressed in general coordinates. We will spatially filter the governing 
equations to represent the problem by means of the Large Eddy Simulation (LES) method. 
Thus, the governing equations represent the 2-D resolved velocity field with the subgrid 
scale (SGS) effects represented by the Smagorinsky (1963) model. We use the LES method, 
which is normally used for 3-D representations of flow, in a 2-D simulation because of the 
complexities of representing two cylinders in the flow field. A full 3-D calculation would 
present computational requirements that would be insurmountable in terms of the facilities 
available to us for this study. We recognize that the 2-D calculations will not be truly 
representative of the actual flow at these Reynolds numbers, but the 2-D CFD analysis from 
this study will provide some insight not previously available. Because this is a 2-D study, we 
expect, based on our experience and that of others in related studies, that the calculated 
drag and lift coefficients will be slightly greater than the values that would have been 
obtained in a 3-D study. 

We will use represent the problem in general coordinates and use the 3-D LES approach 
presented by Lu et al. (1997), although, in this case, we have a 2-D problem. The value for 
the Smagorinsky modeling constant for this problem is 0-1. 

The boundary conditions to be applied are the typical no-slip and no-penetration 
conditions applied to the surface of the cylinders. The inflow boundary condition is that the 
incoming flow is uniform. The outflow boundary condition is that the flow crossing the 
outflow boundary is not affected by the presence of the boundary. This means that vortices 
approaching the outflow boundary cross the outflow boundary undisturbed by the presence 
of the boundary, i.e., the outflow vorticity gradients are set to zero. 

3. REPRESENTATION OF A PAIR OF CYLINDERS 

Representing a pair of cylinders in a flow field requires some special consideration of the 
geometry. Two cylinders present the problem of dealing with two branch cuts in 
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Figure 1. Schematic diagram of two cylinders. 

{" 

Figure 2. The two cylinders in the transformed plane. 

the representation. Figure 1 shows the configuration of the cylinders in the physical plane. 
The branch cuts are along the lines 8-1 (or 7-6) and 2-3 (or 5-4). We need to transform the 
cylinders in the physical plane into a rectangular computational plane. To represent 
the computational plane, the region is opened as shown in Figure 2. Lines 1-2 and 5-6 
represent the cylinder to the left while the cylinder to the right is represented by line 3-4. 
Thus, the computational grid is now rectangular which facilitates the solution of the 
problem. The no-slip boundary conditions for the surfaces of the cylinders are represented 
along the lines 1-2 and 5-6 for the left cylinder and along the line 3-4 for the right cylinder. 
The inflow boundary condition is represented on the ends of the line 7-8, while the outflow 
boundary conditions are represented toward the central part of line 7-8'. The distinction 
between the two regions along line 7-8 cannot be specified in advance; it develops as a part 
of the solution. The lines 2-3 and 4-5 do not have boundary conditions specified, except to 
say that the values from 2-3 are the same as from 4-5. The same is said for lines 1-8 and 6-7. 

4. CYLINDERS OF UNEQUAL SIZE: SUPPRESSION 
OF VORTEX SHEDDING 

We now examine the problem mentioned in the Introduction: a primary (larger) cylinder 
and a control (smaller) cylinder, configured so that the control cylinder is in the vicinity of 
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one of the separated shear layers from the primary cylinder. Our focus in this study is to 
examine the effect of the control cylinder on vortex shedding of the primary cylinder, i.e., 
under what circumstances, if any, is vortex shedding suppressed by the control cylinder? 
The primary cylinder is to have a diameter 10 times that of the control cylinder, D/d = 10, 
where D is the diameter of the primary cylinder and d is the diameter of the control cylinder. 
We treat this problem by placing both cylinders on the x-axis and changing the angle of 
attack of the flow, as shown in Figure 1. In this way, we can change the position of the 
control cylinder relative to the separated shear layer by changing the angle of attack. 
Results for three different Reynolds numbers will be presented. The reference velocity in the 
drag and lift coefficient definitions for the control cylinder is the approach velocity to the 
primary cylinder. The code used for the velocity and force calculations has been thoroughly 
tested for a large number of cases. 

4.1. RE = 100 

This case is a physically 2-D, purely viscous flow calculation. The results for the drag and lift 
coefficients, CD and CL, on the primary cylinder are shown in Figure 3 for five different 
angles of attack at a gap distance of R/D = 1-4, where R is the center-to-center distance 
between the two cylinders. (The term "angle of attack" used herein means the angle above 
the rear centerline of the primary cylinder to the location of the control cylinder.) These 
results show that conventional vortex shedding is essentially suppressed at 25° and 30°, i.e., 
the lift coefficient on the primary cylinder has become virtually a constant (although 
nonzero) value. The explanation for the suppression of conventional vortex shedding is that 
the near wake has become fairly steady in its behavior as fluid from the control-cylinder- 
side shear layer is drawn steadily into the wake. There is still a conventional wake present, 
but it has been pushed much further downstream and does not seem to be affecting the near 
wake. For angles of attack greater than about 30°, the control cylinder is essentially out of 
the wake of the primary cylinder and its effect is still present, but is lessened. The lift 
coefficient is oscillating with a nonzero mean value, which indicates that vortex shedding is 
occurring, but in a different manner than for a single cylinder. The nonzero mean value of 

Time 

Figure 3. Drag and lift coefficients for the primary cylinder at Re = 100 and R/D = 1-4: 
a = 30°; ••••, a = 35°; ---, a = 40°; -•-, a = 45°. 
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-, a = 25° 
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the lift coefficient is because the mean flow field is no longer symmetric due to the presence 
of the control cylinder. 

Suppression of conventional vortex shedding has also affected the drag coefficient, which 
is seen to have a fairly flat value at 25 and 30°. The drag coefficient for a single cylinder at 
this Reynolds number is approximately 1-5, so not only has the lift become a constant value, 
the drag has also decreased in value by about 33%. Virtually no difference is observed in the 
drag coefficient, while the lift coefficient has decreased in value very slightly when the gap 
spacing is changed from 1-4 to 1-6 (results not shown). 

A reason for this suppression of vortex shedding was offered by Strykowski 
& Sreenivasan (1990) who suggested that the "secondary (control) cylinder has the effect of 
altering the local stability of the flow by smearing and diffusing concentrated vorticity in the 
shear layers behind the body". They also noted that the control cylinder diverted a small 
amount of fluid into the wake of the primary cylinder. Both of these effects are seen in 
Figure 4 which is a plot of the vorticity field at 30° and a gap spacing of 1-4D. The control 
cylinder is quite clearly deflecting fluid into the wake of the primary cylinder. The far wake 
of the pair of cylinders consists of elongated and attached vortices with a much less 
pronounced waviness between the sides of opposing vorticity than is seen in a comparable 
flow without the control cylinder. The wake of the control cylinder is behaving in the same 
way as the wake of the primary cylinder in that there is no vortex formation and shedding 

occurring. 
Figure 5 shows a flow visualization comparison between the cases of a control cylinder 

and no control cylinder at Re = 100. The control cylinder is at 30° and a gap spacing of 1-4. 
The near-wake behind the primary cylinder in the presence of a control cylinder is very 
steady compared to the case of no control cylinder. The unsteady wake seems to have been 
pushed farther downstream when the control cylinder is present. The steady near-wake is 
consistent with the calculated result of small, but steady, lift coefficient. The flow visualiz- 
ation technique is "laser-induced fluorescence", in which a laser sheet is used to illuminate 
a fluorescent dye that is washed from the front face of the cylinder as it is towed at constant 
velocity through water. 

4.2. RE = 1000 

As stated earlier, the LES calculations for the turbulent wake cases will be 2-D because of 
the computational requirements to do the full 3-D two-cylinder case. We recognize the 
limitation of this approach, but we still feel that the results will be of practical use in 
examining the effects of the control cylinder. We do anticipate that the 2-D calculations will 
produce drag and lift coefficient values, which will be approximately 5-10% higher than 
would be obtained from a full 3-D simulation or from experimental results. 

Figure 6 shows the drag and lift coefficient behavior for the primary cylinder for several 
cases. We note first that the results at Re = 1000 are noticeably more sensitive to both angle 
of attack of the configuration and the gap spacing. There is very little difference in both drag 
and lift when the angle is changed from 25 to 28°. However, when the gap spacing is 
increased from 1-2 to 1-6 at an angle of 25°, a conventional vortex-shedding-type behavior is 
present. This is explained by the control cylinder having moved to the outer portion of the 
shear layer where its position seems to be much less influential on the vorticity field. At an 
angle of 30° and a gap spacing of 1-3, the drag has decreased very slightly compared to the 
25°-l-2 case, and the lift has increased very slightly with a small oscillation now present. 
This indicates the return of a vortex-shedding-type behavior, although it clearly is not the 
conventional vortex-shedding behavior expected for a single cylinder. We also note in 
Figure 6 that the drag coefficients at a gap spacing of 1-2 have essentially a constant value of 
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Figure 4. Axial vorticity field at Re = 100, R/D = 1-4, and a = 30° 

Figure 5. Flow visualization comparison at Re = 100, a = 30°, and R/D = 1-4. 

about 0-8 while the single-cylinder experimental value at Re = 1000 is about 1-0. The lift 
coefficient on the primary cylinder for the gap spacing of 1-2 has decreased to an almost 
constant value of 0-1. The lift coefficient has a nonzero mean value because the presence of 
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Figure 6  Drag and lift coefficients for the primary cylinder at Re = 1000 for several conditions: , a = 25° 
R/D = 1-2; , a = 25°; R/D = 1-6; ••••, a = 28°; R/D = 1-2; , a = 30°; R/D = 1-3. 
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Figure 7. Drag and lift coefficients for both cylinders at Re = 1000, R/D = 1-2, and a = 25°, 30°. For a = 25° 
primary; , control. For a = 30°; • • • •, primary; , control. 

the control cylinder, although suppressing conventional vortex shedding, is still creating an 
asymmetry in the flow field. 

Figure 7 shows the drag and lift coefficients for both cylinders at a gap spacing of 1-2 and 
two different angles of attack: 25 and 30°. The drag coefficient traces for the primary 
cylinder are reasonably flat at both angles, with the 30° result, at a fairly steady value of 0-8, 
being very slightly lower than the 25° result. Also for the primary cylinder, the lift coefficient 
for the 25° angle, with a steady value of about 0-1, is slightly less than the average value at 
30° which also has some small-amplitude oscillatory behavior. For the control cylinder at 
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25°, both the drag and lift coefficients have a similar behavior; they both oscillate between 
0 and 0-1. At 30°, the control cylinder has a drag coefficient with a value of about 0-35 + 0-2 
while its lift coefficient is about 0-1 + 0-2. Based on the values of the lift and drag coefficients 
on the primary cylinder, these results indicate that the angle of attack position of 25° is only 
slightly better than the one at 30°. 

The differences in drag and lift behavior noted in Figure 7 can be explained by noting the 
difference in wake vorticity behavior at the time the attached vortex on the primary cylinder 
extends farthest downstream. The vorticity plot for an angle of attack at 25° and a gap 
spacing of 1-2 is shown in the top part of Figure 8. First, we note that the primary cylinder 
wake is elongated over the wake for an isolated single cylinder. The slight oscillatory lift 
behavior shown in Figure 7 at an angle of attack of 25° is explained by noting, in Figure 8, 
the far wake of the configuration. There is a distinct Karman vortex street forming as the 
vortices move away from the vicinity of the cylinder pair. The near-wake at 25° shows the 
wake of the control cylinder is deflected down into the core of the primary cylinder wake. 
For the conditions shown in Figure 7, the control-cylinder wake acts as a jet-like stream 
that seems to steady the wake of the primary cylinder. The bottom part of Figure 8 shows 
the result of the same calculation for an angle of attack of 30°. The jet-like behavior seems 
less intense in this case. The drag and lift traces on the control cylinder at 30° show that 
there is time dependence in the wake behavior that is not present for the 25° case. Also, the 
length of the primary cylinder large vortex is greater in the 25° case which pushes whatever 
unsteadiness is present farther away from the near-wake. This greater wake length has the 
effect of steadying the near-wake and suppressing conventional vortex shedding. 

Figure 9 shows a sequence of flow visualization pictures at Re = 1000, with and without 
the control cylinder, at the same relative time in the shedding cycle of the primary cylinder 
alone. The control cylinder is at 25° and a gap spacing of 1-2. In this case, the physical wake 
behind the primary cylinder is 3-D and turbulent which means that the flow structure from 
flow visualization is not nearly as vivid as at Re = 100. However, the difference in the two 
wake structures is still obvious. The case on the left, with no control cylinder, shows the 
roll-up of the vortex sheets emanating from the separation points and the alternate and 
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Figure 8. Axial vorticity field at Re = 1000, R/D 
R/D = 1-2, and a = 30° (bottom) 

1-2, and a = 25° (top). Axial vorticity field at Re = 1000, 
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Figure 9. Flow visualization comparison at Re = 1000, a = 25°, and R/D = 1-2. 
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periodic shedding of vortices, all of which is predictable and expected. However, the case on 
the right, with the control cylinder present, has a distinctly different structure. There is 
a shedding-like behavior, but it is less wavy and occurs slightly farther downstream. The 
near-wake seems to be less time-dependent. This, however, is a qualitative judgement since 
the turbulence in the wake distorts the mean flow structure that is present. Nevertheless, the 
near-wake with a control cylinder present is clearly less time-dependent which helps to 
explain the small, yet constant, value of the lift coefficient. 

4.3. RE = 3000 

Again, this flow is at a Reynolds number at which the wake has an established turbulent 
behavior. However, we continue with our 2-D representation due to the computational 
requirements necessary to do the full 3-D two-cylinder case, fully recognizing the limitations 
of the 2-D results. Due to the 2-D restriction, flow (including turbulence) in the axial 
direction of the cylinder is suppressed. 

Figure 10 shows the drag and lift coefficients on the primary cylinder at Re = 3000, a gap 
spacing of 1-2, and three angles of attack: 15, 20, and 25°. At 20°, the lift coefficient on the 
primary cylinder is relatively flat, especially when compared to its behavior at the other two 
angles, and has a value just slightly greater than zero. At 15 and 25°, the lift coefficient has 
fairly irregular oscillations about a mean of slightly greater than zero. These results show 
that the configuration at 20° has the best behavior regarding lift reduction; vortex shedding 
from the primary cylinder is virtually suppressed due to the presence of the control cylinder. 
The time-averaged drag coefficient, also seen in Figure 10, for each of the three angles is 
about the same. At 15 and 25°, the instantaneous drag coefficient is somewhat irregular with 
a mean value of about 0-8. At 20°, the instantaneous drag coefficient is fairly flat with an 
average value of about 0.8. The average value for a single, isolated cylinder is about 0.95 at 
Re = 3000. These results indicate that the presence of the control cylinder has a drag- 
reducing influence on the primary cylinder, with the best results obtained for 20°. 

At Re = 3000, the same behavior as at Re = 1000 is noted regarding the wake length 
(although not shown). At the two angular placements (15 and 20°) of the control cylinder for 
which calculations were done, the 20° placement had the longer, hence steadier, wake which 
caused the lift coefficient to lessen and be reasonably steady. This is exactly the same 
behavior noted in Figures 8 and 9 for the Re = 1000 case. At 20°, the wake extends farther 
downstream than at 15°. The wake at 20° shows a region of recirculation region in the 
center of the near-wake. The base pressure is affected by this recirculation in such a way that 
the drag and lift on the primary cylinder are both decreased with the lift having decreased 
significantly and with virtually no oscillation. The region of recirculation in the 20° wake 
plays the same role as a flexible splitter plate. In the 15° wake, there is no evidence of an 
organized recirculation and, consequently, the lift and drag both have an unsteadiness, 
albeit small, in this case not found in the 20° case. 

Figure 11 shows the drag and lift coefficients for both cylinders at a gap spacing of 1-2 and 
two different angles of attack, 20 and 25°. As stated earlier, the control cylinder, being in the 
wake of the primary cylinder, does not see a steady approach velocity. The control cylinder, 
on the lower side of the upper shear layer, sees an irregular approach flow. The drag 
coefficient trace for the primary cylinder is reasonably flat at 20° with a value of about 0-75, 
while at 25° it has a small amplitude oscillation with approximately the same mean value. 
The value of 0-75 is a reduction from the single cylinder value of about 1-0 at Re = 3000. The 
lift coefficient on the primary cylinder at 20° has a slight oscillation with a mean value of 
approximately 0-05 as compared to a single-cylinder value of ± 0-35 with a zero mean 
value. At 25°, the lift coefficient on the primary cylinder has an irregular behavior, with 
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Figure 10. Drag and lift coefficients for the primary cylinder at Re = 3000 and R/D = 1-2: , a = 15°- - 
a = 20°;-"-, a = 25°. 
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Figure 11. Drag and lift coefficients for both cylinders at Re = 3000, R/D = 1-2, and a = 20°, 25°. For a = 20°: 
 , primary; , control. For a = 25°; • • • -, primary; , control. 

evidence of an unidentified higher harmonic present in the signal, with a mean of approxim- 
ately zero. The control cylinder at 20° has both drag and lift coefficients oscillating at small 
amplitude with approximately zero mean values while, at 25°, the lift and drag on the 
control cylinder each have a very irregular pattern with alternating regions of high and low 
amplitude behavior. 

Figure 12 shows the contrast in the wake structures at Re = 3000, with and without the 
control cylinder in place, similar to Figure 9 for Re = 1000. For the Re = 3000 case, the 
control cylinder is at 20° and the gap spacing is 1-2. Again, the physical wake is 3-Dand 
turbulent, making the flow visualization much less vivid than for a laminar flow case. 
However, the difference in the two wake structures is quite distinct. The pictures on the left, 
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Figure 12. Flow visualization comparison at Re = 3000, a = 20°, and R/D = 1-2. 

without the control cylinder in place, show the classical alternate and periodic shedding of 
vortices, with the wake widening as the vortices move downstream. The pictures on the 
right, with the control cylinder in place, show a much narrower wake and a less pronounced 
vortex structure in the wake. The near-wake again seems to be less time-dependent, which is 
a result consistent with the calculated results. 

5. CONCLUSIONS 

We have shown that the presence of a properly placed small control cylinder in the wake of 
a primary cylinder can significantly reduce the possibility of vortex-induced vibration by 
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essentially eliminating conventional vortex shedding from the primary cylinder for 
Re < 3000. The suppression of conventional vortex shedding was found to be sensitive to 
both the angle of attack of the approach flow and the gap distance separating the centers of 
the two cylinders. The minimum values of both lift and drag on the primary cylinder were 
found to depend on both angle of attack and the gap distance. A physical application of this 
concept would have to be a flow which kept the same orientation to the primary and control 
cylinder, such as a flow past a pipeline spanning a river. 
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The current study examines the feasibility of placing a piezoelectric membrane or "eel" in the 
wake of a bluff body and using the von Kärmän vortex street forming behind the bluff body to 
induce oscillations in the membrane. The oscillations result in a capacitive buildup in the 
membrane that provides a voltage source that can be used, for example, to trickle-charge 
a battery in a remote location. The aim of the hydrodynamic testing is to maximize the strain 
energy and mechanical power by coupling the unsteady flow field with the vibration of the 
membrane. The requirement of optimal coupling is best defined as a resonance condition where 
the membrane has a negligible damping effect on the original von Kärmän vortex street. 

© 2001 Academic Press 

1. INTRODUCTION 

LITERATURE RELATED TO THE CHARACTERISTICS of bluff body wakes is extensive and there is 
also considerable literature related to the problem of flutter and the response of flexible 
structures placed in a cross-flow. The response of a flexible membrane may be considered to 
demonstrate aspects of these phenomena. Flows behind bluff bodies in the Reynolds 
number range 103-105 are characterized by the formation of a vortex street of reasonably 
constant Strouhal number with respect to Reynolds number. The vortex streets in this range 
have a strongly three-dimensional character. Huerre & Monkewitz (1990) provide a de- 
scription and review the formation of the von Kärmän street in terms of being the result of 
a local absolute instability growing into a global linear instability, and arguing against the 
mechanism if the vortex street formation does not involve details of flow separation. The 
presence of a rigid splitter plate behind a bluff body can have dramatic effects in terms of 
reducing and suppressing vortex street formation and therefore the stability characteristics 
of the flow, e.g., Roshko (1954), Gerrard (1966). These studies highlighted the way the 
presence of a splitter plate of increasing length can delay and eventually prevent the 
formation of oscillations in the wake. The effect of splitter plates is relevant in the current 
study as in some flow configurations the membrane is stiff enough to have the effect of 
a rigid splitter plate. If the membrane has small inertia and is flexible enough to be able to 
respond rapidly to the unsteady pressure field set up by the vortex shedding, one may expect 
that the membrane may oscillate with a wavelength and frequency similar to that observed 
in the unobstructed wake. This results in a coupled fluid/structure problem. 

The study of oscillating structures excited by flow fields is often described in terms of free 
and forced vibration. If one considers a simplified description of the displacement of the 
structure in the spanwise direction, y{x,t), as a mechanical system of mass m subject to an 
external force field, then 

my(t, x) + H(y, y, x, t)=fi+f2. (1) 

0889-9746/01/040629 + 12 $35.00/0 © 2001 Academic Press 
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Figure 1. Geometry of oscillating membrane behind a flat plate. 

The function H represents internal restoring forces related to the body stiffness and 
damping properties. The forcing function on the right-hand side, which is the result of the 
external flow field, is often expressed as the sum of two parts. The first term/i is the free 
vibration forcing field and represents the self-induced effects of the unsteady wake, gener- 
ated by vortex shedding. This type of excitation has been classified as movement-induced 
excitation (MIE); see, e.g., Naudascher & Rockwell (1994), Khalak & Williamson (1999). 
This type of forcing is the mechanism responsible for wing flutter. 

The second term,/2, represents the effect of an external forcing field that has its source 
remote from the body being excited. This type of forcing is classified as extraneously 
induced excitation (EIE) and is a feature of "gusting". Paidoussis (1966a) developed 
relationships for the stability of a long flexible slender cylinder, orientated parallel with the 
free stream. He developed an approximation for the unsteady pressure field acting on the 
cylinder by using small-amplitude assumptions and an approximation for the added mass 
of the cylinder when oscillating in the free stream. Using this expression for the pressure 
differential based on the shape and velocity of the cylinder, the conditions of stability for the 
successive modal shapes based on cylinder properties and flow conditions were calculated. 
The flow-induced oscillations were self-excited and the experiments of Paidoussis (19666) 
showed oscillation dominated by single modes. In contrast, we are interested in the 
excitation of a membrane produced by the vortex shedding of the bluff body. 

2. EXPERIMENTS 

A number of different membranes were tested in a water channel running at speeds of 
0-05-0-8 m/s. Two different bluff body widths were used, 5-08 and 3-81 cm, resulting in 
a Reynolds number range, Reß = UxD/v, of 5 x 103-4 x 104. The aspect ratios of the bluff 
bodies were 6 and 10, respectively. 

Figure 1 shows the important experimental parameters involved in describing the 
behavior of the undulating eel, D is the width of the bluff body, s is the distance downstream 
of the bluff body where the head of the eel is placed, and Ux is the free-stream velocity. The 
physical properties of the eel are described in terms of its stiffness E, length L, thickness h, 
width W and mass per unit length peel. Figure 1 also shows an interpretation of the type of 
vortical structures forming over the membrane. 

Experiments were conducted in a recirculating water channel 18 in wide and 5 in deep 
(1 in = 25-4 mm). The ratio of gap width S to bluff body size D was equal to unity in the 
current experiments and not varied. Flow visualization using fluorescent dye and particle 
image velocimetry (PIV) experiments both used a laser sheet generated from a continuous 
7 W argon-ion laser to image a cross-section through a horizontal plane of the flow. 
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(a) (b) 

Figure 2. (a) Formation of von Kärmän vortex street without membrane and (b) the formation of 
a coherent wake behind the bluff body with a flexible membrane present. 

Figure 2(a, b) shows dye visualization images behind a 5-08 cm bluff body with and without 
an eel present at ReD = 10000. At this Reynolds number, the vortex shedding behind the 
plate, although coherent, is strongly turbulent and three dimensional. The membrane in this 
case is executing large forced oscillations, and the conjectured vortical structures are 
highlighted in Figure 2(b). The spacing of vortical structures in both cases is of the order 
1.9D. Although the flow visualizations in Figure 2 show a somewhat similar spacing of 
structures, the overall topologies of the two flows must be different, as the membrane acts as 
a streamline to prevent communication between the separating shear layers. 

The PIV system consists of an externally triggered Cohu 6600-3000 series full frame 
transfer camera, 659 x 496 pixels, with 10-bit resolution. The acquisition timing sequence is 
as follows. The first frame is triggered for a short electronic exposure, of the order of 1 ms in 
the current experiments. The transfer time for the first frame is 17 ms. While the data for the 
first image are being transferred, the camera is triggered for a second exposure. The 
exposure period for the second image is set electronically for 17 ms, the maximum time 
exposure for a single frame. However, rather than expose the CCD array to the laser light 
for this period, the light source is interrupted mechanically in order to have an equivalent 
exposure time in the second frame as in the first. This system allows an effective time delay 
between images of the order 0-5 ms if required and an image pair acquisition rate up to 
30 Hz. It is critical for the electronic exposure period in the second image to be 17 ms, as this 
prevents corruption of the data transfer of the first image, i.e., all the data from the first 
image have been transferred before the second image data transfer begins. 

To generate information on the unsteady shape of the eel, a series of images were grabbed 
to PC RAM at a rate of 60 Hz. Figure 3(a) shows superimposed images of the oscillating eel 
over a full cycle, which is used to define a maximum amplitude. The instantaneous 
membrane images were interrogated with edge detection software to extract information 
about the instantaneous position of the membrane. Figure 3(b) shows a sequence of 
membrane shapes after edge processing, superimposed on the one plot. 

In the Reynolds number range 5000-40000 the Strouhal number, St, behind the 1-5 in 
bluff body was equal to 0455 ± 0-002, and for the 2 in bluff body it was 0-160 ± 0-002. This 
slight variation is a function of increased tunnel blockage. The Strouhal number was 
essentially invariant over the range of Reynolds numbers being investigated. Four 
membranes were tested. The first two were 18 in and 24 in long, made from polyvinylidene 
fluoride (PVDF), which is a piezoelectric material that when strained generates a voltage 
potential in capacitor-like polymers. A third membrane was made primarily from poly- 
urethane (PU), with two thin outer layers of PVDF attached to the polyurethane. The 
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(a) (b) 

Figure 3. (a) Superposition of membrane shapes and (b) a sequence of individual membrane shapes. 

Properties 
TABLE 1 

of membranes tested 

Thickness, t 
(mm) 

Length, 
(m) 

L Mass, m 
(g) 

EI/p„i 
(m4s"2) 

L/D 
(-) 

18 in PVDF eel 
24 in PVDF eel 
18 in PU eel 
18 in Plastic eel 

0-7 
0-7 
0-6 
01 

0-457 
0-076 
0-457 
0-457 

38 
53 
34 

7 

0-0028 
0-0028 
000062 
00021 

12, 18 
12 
12 
12 

fourth membrane was made from plastic shim stock, selected so as to have similar natural 
frequencies to the 18 in PVDF membrane but with a much smaller mass per unit length. 
The width of all membranes, W, was 0-0762 m. 

The properties of the eels tested are listed in Table 1. Here I is the 2nd moment of area 
and peel is the mass per unit length of the eel. The term EI/petl represents the effective 
stiffness of the eel in response to bending, and its value was determined directly from 
a deflection test. This term is somewhat similar to the spring-mass ratio which is used to 
describe the undamped natural frequency of a spring-mass system. 

The internal damping of the shim-stock eel is a factor of approximately two smaller than 
the PVDF and PU, as estimated from a free vibration experiment in air. Values of length of 
the eel to the bluff body size, L/D, are also shown. To assess the behavior of this range of 
eels, measurements were made of the frequency of oscillation and amplitude, as defined in 
Figure 3(a). Figure 4(a) shows the ratio of the response frequency /eel to the natural 
frequency/nat with increasing ReD, and Figure 4(b) shows the ratio of eel amplitude to bluff 
body with increasing ReB for the PU membrane. 

At Reynolds number of order 1000, the amplitude of oscillation of the membrane is small 
and the ratio of frequencies is about 0-5. The oscillation in this case is infrequent. In this 
mode, the behavior of the eel can be interpreted as being similar to that of a rigid splitter 
plate. At Reynolds numbers less than 500, the eels appear to be causing the separated shear 
layers from the bluff body to reattach on the eel surface and form an essentially closed 
recirculation bubble on the eel, as shown in the dye visualization image in Figure 5. 

At a Reynolds number of order 10000, the membrane begins to oscillate at a fairly 
constant frequency. An image of the membrane flapping in this mode is shown in 
Figure 6(a). Although the membrane appears to be oscillating with an apparently traveling 
waveform, it is not well coupled to the flow, as indicated by the fairly low value of 
/eei/fnat ~ 0-6-0-8, indicating that the membrane exerts a damping effect on the flow. As the 
Reynolds number is further increased, the eels effective length gradually shortens. This 
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Figure 4. (a) Plot of frequency response and (b) amplitude of the PU membrane versus Reynolds 
number. 

Membrane 

Figure 5. Flow visualization of PU membrane at Re^ = 1000. 

U„ 

(a) (b) 

Figure 6. Membrane oscillation: (a) ReD = 10000; (b) ReD = 20000. 

results in a decrease in wavelength and an increase in amplitude of oscillation. As this 
occurs, there is also a trend for the frequency ratio to approach unity, indicating that the eel 
is well coupled to the flow. The wavelength of the membrane shortens to a point where it 
appears that it closely resembles the wavelength of the coherent structures in the wake of 
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Figure 7. Scaling of Strouhal number versus Reynolds number for a range of membranes: D, pU- 
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shim stock. 

a plate without a membrane being present, as shown in Figure 6(b). The amplitude of 
oscillation of the membrane in Figure 6(b) appears to be similar or larger than the width of 
the wake when the membrane is not present. This would imply an increased momentum 
deficit caused by the motion of the membrane. 

As the Reynolds number increases beyond 20 000 for the membrane shown in Figure 6 
we see relatively constant amplitude of oscillation and a linear increase of frequency of 
oscillation with flow velocity. The concatenation of the wavelength of the eel translates 
directly into an increase of amplitude, which seems to indicate the length of the eel is 
essentially constant. The amplitude of response and the frequency ratio/eel//nat appear to be 
directly related, as the amplitude plots versus ReD show similar trends. Note that when the 
eel reaches the optimal coupling condition and its effective wavelength is fixed, and if it is 
not being stretched, the amplitude will remain constant. This apparent length preserving 
aspect of eel behavior also suggests that tension is not an important factor when considering 
the dynamics of the eel. It also implies that the phase speed of structures convecting along 
the eel surface is approximately constant for a fixed flow velocity, regardless of the ability of 
the eel to couple to the flow. The phase speed is defined as C/phase = A/eel, whole X is the 
membrane wavelength. The fact that the eel amplitude appears to reach a maximum may 
indicate the effect of the free stream or internal damping. The membrane appears to be able 
to oscillate with a maximum amplitude that is similar to the natural wake width, but does 
not exceed it, despite being forced close to its natural frequency. 

Figure 7 shows the response of the range of eels tested, plotted with respect to their 
nondimensional frequency, feeiD/Un and bluff body Reynolds number, ReD. 

The various data sets show that, as the Reynolds number increases, the trend of the 
membrane behavior is towards optimal flow coupling, defined by feelD/Ux » 0.16, which is 
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equivalent to feJfmX « 1. This trend can be seen in all the data sets as the flow speed 
increases, suggesting that there may be a similarity scaling to describe the membrane 
behavior. However, the different membranes approach /eel//na, « 1 at different rates when 
scaled with respect to Reynolds number. This can be explained by the fact that the Reynolds 
number does not take into account any material properties of the eel, which obviously have 
a significant effect on the membrane response. Important aspects of the above data sets are 
that the frequency response of the 24 in and 18 in eel behind the 1-5 in plate are identical, 
suggesting that the membrane response does not depend critically on the length of the 
membrane, at least for the relatively large L/D ratios we are considering here. The 24 in eel 
displays a marked improvement in response behind the 2 in bluff body, compared to the 
18 in eel placed behind the 1-5 in bluff body, indicating a significant response sensitivity to 
the bluff body size. The shim-stock eel, which has almost the same natural frequencies as the 
18 in PVDF eel displays far superior coupling to the flow, suggesting that an inertial or 
internal damping factor is important to describe the membrane behavior. The data sets 
show a leveling out of the nondimensional frequency, indicating that the oscillation appears 
to have an upper bound of frequency as determined by the bluff body size and flow speed. 
This would also seem to indicate that the observed phenomenon is not a self-excited, but is 
critically dependent on the presence of the bluff body. 

3. NONDIMENSIONAL DESCRIPTION OF MEMBRANE BEHAVIOR 

A simplified description of the motion of the membrane, defined by y(x, t), is given by the 
Euler-Bernoulli beam equation where the forcing function/(x, t) is the effect of the fluid on 
the membrane: 

, + ^ + -^-^=/(^). (2) ^i + J-^y + ^L^i-T^y 

dr2 peel dt peeX dx4 dx 
The solution for the displacement of the membrane can be represented as 
y(x,t) = £n°°=1 <t>n(x)A„(t), where <D„(x) represent an orthogonal set of eigenfunctions. These 
eigenmodes were used by Paidoussis (1966a) to describe the dynamics of a flexible cylinder, 
pinned at both ends, in a stream. For the case of the cylinder pinned at one end and free 
at the other Paidoussis (1966a) used a power-series expansion for the shape of the cylinder. 
Wu (1961), in contrast, used traveling waves to describe the motion of a swimming plate 
through water. The choice of the orthogonal basis functions in the current study is based on 
the approximation of the membrane with an Euler-Bernoulli beam and provides a com- 
pact, though not necessarily unique way to describe the membrane motion. If we neglect the 
effects of tension and damping, this equation also yields information on the natural 
frequencies of these modes, which may be expressed as co„ = (ßZ/l2)y/EI/peeU where 
ß„ represent the eigenvalues corresponding to $„(x), which depend on the boundary 
conditions of the membrane. If single-mode excitation were to be possible, it would imply 
that the membrane is oscillating as a standing wave. This would mean a significant 
departure of the flow field topology from the natural von Kärmän street, which seems 
unlikely as the mass ratio is small, peJp x 1-3, and hence, we expect a broadband response 
of the membrane. If the membrane is to follow closely the forcing of the von Kärmän street, 
as experiments show, then the forcing is essentially a traveling pressure wave. Since the 
membrane is fixed at a pivot point, the only way its response can resemble a traveling wave 
is if there are significant contributions to the eel shape from more than one mode. 

Data sets for the shape of the eel have been projected onto the eigenmodes to evaluate the 
contribution of each mode to the shape of the eel. Figure 8(a) shows the relative modal 
contributions An(t), for modes 0-5 for the PU eel operating at 0-36 m/s behind a 1-5 in bluff 
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Figure 8. (a) Modal contributions to shape of membrane , mode 0; , mode 1; —.—., mode 
2; »mode 3; , mode 4; -..-..-, mode 5 and (b) pressure differential acting across membrane. 

In (b): , pressure/stagnation pressure; , eel. 

body. The modal contributions start to decay significantly past mode 4 and hence we have 
a fairly compact data set to describe the eel motion. The functions An{t) oscillate at the same 
frequency and display significant phase differences between successive modes. The fact that 
there are multiple modes present rather than a dominant single mode, coupled with the 
earlier observation that the peak frequency ratio /eel//nat » 1 seems to be linked directly to 
the size of the bluff body, would seem to indicate that the motion of the membrane is not 
self-excited. Substituting the experimental data for y(x, t) into the linearized equation of 
motion [equation (2)] and neglecting the effects of damping and tension, yields an expres- 
sion for the pressure field acting on the eel. Figure 8(b) shows a plot of the pressure 
differential, normalized with respect to the stagnation pressure, \ U2

xp, acting across the eel. 
The pressure differential is a small fraction of the stagnation pressure, which seems to 
indicate that the reduced differential equation description of the system is reasonable. An 
accurate test of this conclusion would be from a PIV measurement of the velocity differen- 
tial across the membrane. The pressure differential at the tail of the eel indicates that 
a velocity difference exists at this point and hence the possibility exists of measuring vortex 
shedding into the wake. Figure 8(b) indicates that the wavelength of the forcing function is 
similar in shape to the eel and hence similar in shape to the pressure field set up by 
a traveling vortex street. This suggests that the forcing is related in frequency to the size of 
the bluff body, and hence the Strouhal number. An example of the reconstructed shape of 
the membrane using the first 5 modes is also shown in Figure 8(b). 

If the form of the forcing function is modeled as a traveling wave, it may be approximated 
by P(x)sin(27r/^(x - ct)) where X is the wavelength of the disturbance given by the von 
Kärmän vortex street; so that c x WxSt/D. The magnitude of the forcing will be a fraction 
of the stagnation pressure. From experimental data this function is of the order of 
P(x) x 0-lpDUl,W/peel. Projection of the eigenmodes onto this forcing function results in 
a time-varying function £„(t) = ft $„P(x) sin (2TC/1(X - ct)). Results obtained by integrating 
for the first four modes are shown in Figure 9. 

The integration of the traveling wave forcing function results in oscillating functions that 
vary successively in phase. This is a possible explanation for the phase shifts in the response 
functions shown in Figure 8(a). Modes 2 and 3 have the largest amplitude as their 
wavelengths are closest to that of the selected traveling wave. Using the description of the 



ENERGY HARVESTING EEL 637 

Mode 1 

ModeO 

Figure 9. Integration of eigenmodes $>„(x) with P(x)sin(27t//l(x - ct)). 

Figure 10. Reduced frequency f^D/U«, versus a: A, 18 in PVDF; >, 101 uin shim stock; <, 24 in 
PVDF eel, 1-5 in bluff body; O, 24 in PVDF, 2 in bluff body; D, map 5. 

response of the membrane as y(x, t) = £"= i ®n(x)A„(t), the result of projecting the eigen- 
modes onto a reduced description of the system gives a system of ordinary differential 
equations for the time-varying functions A„(t) as 

Ä„(t) + <o2nAn(t) = 021/2 pW7peel£(i)B. (3) 

Solution of these equations for A„(t) gives similar results to the experimental value of the 
modal functions. This simplified analysis_suggests that the amplitudes of response of 
the respective modes, Äm are of order 0-2£„UlpW/(peA- co2

eel + ml)), where coeel is the 
oscillating frequency of the membrane and fluid, and ^„ is the amplitude of the modal 
function £„(t). This expression for the modal amplitude term incorporates the effect of the 
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Figure 11. Streamline patterns showing vortex shedding cycle in stationary frame of reference. 

magnitude of the fluid forcing, pUl, the forcing frequency <yeel, the mass of the eel, peeb the 
stiffness of the eel via co„ and the wavelength of forcing, £„. We expect that for the eel to be 
well coupled to the flow, this amplitude should be of the order of the bluff body width; 
hence, we suggest that when a = AJD « 1 the eel should be well coupled to the flow. Figure 
10 shows a plot of the response of the nondimensional membrane frequency f^D/U«, as 
a function of a. The modal function, £„, was selected as the function that has the closest 
wavelength to the structures in the flow. If a «1 we expect the membrane to be acting 
essentially as a long splitter plate and hence poor coupling would be expected, as indicated 
by a low Strouhal number for a. x 0-1. The plot shows that for a > 1-5 the eel appears to be 
well coupled, as would be expected if the amplitude of oscillation is larger than the bluff 
body width. The effect of internal damping and the free stream would be to limit the 
amplitude of response; these effects are not accounted for in this simplified model of 
response. The definition of a as the system description parameter follows a similar deriva- 
tion to the "effective stiffness" parameter defined by Leonard & Roshko (2001). 

4. PIV RESULTS 

Figure 11 shows the streamline pattern developing around the membrane during one 
oscillation cycle. The region shown represents about 3/4 of the membrane wavelength. 
Figure 11(a) shows the presence of two coherent vortical structures, vortex A and B, 
adjacent to the membrane. Vortex A is starting to convect along the underside of the 
membrane, while vortex B is beginning to impinge on the top surface of the membrane. 
Both structures show that reversed flow exists on the surface of the membrane close to the 
pivot point. Hence, secondary vorticity, of opposite sign to the impinging structures, is 
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Figure 12. Streamline pattern when moving with bias velocity of 0-65Ux 

(a) (b) 

Figure 13. (a) Vorticity field and (b) streamline pattern at the same phase point in shedding cycle. 

being generated on the membrane surface under these structures. Figure 11(b) shows that 
the membrane appears to be deforming significantly in response to the impingement of 
vortex B. The presence of vortex A is no longer evident, although there is significant 
deformation of the streamline pattern in the region into which it was convecting. In Figure 
11(c), vortex B appears to be significantly deforming in response to the membrane, which is 
now moving upwards as a result of pressure from a newly impinging vortex, vortex C. An 
interesting feature of Figure 11(c) is the appearance of a saddle point in the flow below the 
core of vortex B, indicating that two streamlines terminating at the eel surface have joined 
and bifurcated away from the surface. Figure 11(d), the final phase in the shedding cycle, 
shows vortex C beginning to convect along the surface and the appearance of a saddle point 
in the free stream separating the like signed vortical structures, vortex B and D. There is 
reversed flow under this saddle point and hence a communication of material from vortex 
B to D. This communication of material has also been observed in flow visualization 
experiments. The reversed flow is highlighted in Figure 11(d). 

Figure 12 shows the streamline pattern for a section of Figure 11(d) when a bias velocity 
of the order 0.65 of the free-stream velocity has been applied. This velocity bias results in the 
membrane appearing as a streamline in the flow and also shows the presence of structures 
along the length of the membrane for the full field of view. This indicates that the vortical 
structures impinge on the membrane head with significant reversed flow, and then acceler- 
ate downstream along the membrane surface. Figure 13 shows a comparison of a vorticity 
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and streamline field corresponding to the point in the oscillation cycle when an impinging 
vortex is fully formed and the membrane is at maximum deflection in response to this 
impinging structure. Vorticity from the previous half of the shedding cycle can be seen on 
the underside of the membrane. 

5. CONCLUSIONS 

The response of a flexible membrane or "eel" to external forcing due to the vortex shedding 
downstream from a bluff body has been examined using frequency response measurements 
and PIV. Data show that the membranes are able to exhibit lock-in behavior to the bluff 
body shedding. Lock-in is defined to occur when the membranes oscillate at the same 
frequency as the undisturbed wake behind the bluff body. When the membrane reaches 
this condition, its wavelength and amplitude are also similar to the undisturbed vortex 
street. The amplitude of oscillation appears to be confined to within an envelope that is 
similar in width to the wake that forms behind the bluff body when no membrane is 
present. A condition for lock in has been suggested as occurring when 
Q'2LUl,pW/(peel( - «eel + o>l)D) > 1. This relationship is derived from a simplified de- 
scription of the oscillating system as an Euler-Bernoulli beam and fits the data reasonably 
well. PIV data sets indicate the presence of vortical structures convecting along the length of 
the eel in synchronization with the eel distortion. These structures correspond to the 
alternating vortices that are formed and shed from the edges of the bluff body. 
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We present DNS results of vortex-induced vibrations (VIV) of flexible cylinders with aspect 
ratio greater than 500, subjected to linear and exponential sheared flows. The maximum 
Reynolds number is Rem = 1000 resulting in a turbulent near-wake. The first case corresponds 
to lock-in of the third mode (n = 3), while the second case is a multi-mode response with excited 
modes as high as n = 12 and 14. We observed vortex dislocations similar to the structures 
visualized in experiments for stationary cylinders, and obtained corresponding force distribu- 
tions. Strong vortex dislocations can result in substantial modulation of the forces on the body, 
and such effects have to be taken into account when constructing low-dimensional predictive 
models. © 2001 Academic Press 

1. INTRODUCTION 

PREVIOUS EXPERIMENTAL STUDIES of vibrating cylinders subjected to sheared flows have 
shown the existence of cellular shedding patterns (Stansby 1976; Woo et al. 1981; Peltzer 
& Rooney 1985). The size and stability of such cells have some subtle differences with 
similar structures encountered in stationary cylinders, as synchronization (lock-in) and 
multi-mode response compete directly with frequency mismatching along the span. The 
latter is the primary reason for the cell formation in either sheared flow or uniform flow past 
tapered cylinders (Maull & Young 1973; Noack et al. 1991; Williamson 1992). The results 
from the experimental work suggest that the size of the cells is proportional to the 
amplitude of vibration and inversely proportional to the shear parameter ß. This parameter 
is defined as ß = (d/U)(du/dz), where z denotes the spanwise (cylinder axis) direction, d is the 
cylinder diameter, and U the span-averaged free-stream velocity. It is possible, therefore, to 
find cells of constant shedding frequency of 40 diameters or more unlike the stationary 
cylinder where such cells are not longer than approximately 10 diameters (Peltzer & 
Rooney 1985). 

The experimental work has primarily focused on frequency and point-measurements. 
However, measurements of forces on the cylinders are needed to establish the effect of 
vortex dislocations. Such data are currently missing with the exception of recent work by 
Triantafyllou and collaborators who investigated the effect of vortex splits (Hover et al. 
1998). In numerical work, the first three-dimensional simulations of VIV of flexible cylinders 
subjected to sheared flow has been reported in Newman & Karniadakis (1997). Follow-up 
work including a detailed force distribution for uniform inflow was reported in Evangelinos 
et al. (2000). In that work, the difference between a traveling and a standing wave response 
was examined, and a new empirical model was proposed for predicting the average drag 
force. 

0889-9746/01/040641 + 10 $35.00/0 © 2001 Academic Press 
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FLOW 

Reynolds number (max ~ min) 
Re = Ud/v 

Inflow profile 
STRUCTURE 

Boundary conditions 
Constraints 

Aspect ratio, L/d 
Mass ratio, m 

Cable phase velocity, c 
Beam phase velocity, y 

Damping, R 

D. LUCOR ET AL. 

TABLE 1 

Linear shear inflow Exponential shear inflow 

Re = 1000 ~ 607 Re = 1000 ~ 300 
Turbulent regime Turbulent/transition regime 

Linear Gaussian 
Beam Beam/cable 

Pinned and hinged ends 
No streamwise motion (x-direction) 
Free transverse motion (^-direction) 

L/d = 567 L/d = 914 
m=2 m=2 

c = 00 c = 25-8 
y = 4487-92 y = 345-248 

R = 00 R = o-l 

In the current work, we investigate numerically VIV of flexible cylinders subjected to 
shear flows. We only consider crossflow motion which is described by 

d2Y 

8t2 
82Y 

dz2 
a4 7 RdY     1 

+ -F(z,t), 
m m 8t (1) 

where we denote by Y{z, t) the crossflow displacement and by F(z, t) the total lift force, i.e., 
including both pressure and viscous contributions. Also, m is the mass ratio, R is the 
damping coefficient, and c = JYjm; y = JEI/m, where T is the tension and El the bending 
stiffness. The lift force is obtained by DNS using the spectral/fcp element method 
(Karniadakis & Sherwin 1999), implemented in the parallel code JTZK^OX. 

In Table 1, we list the values of the parameters in equation (1) for the two main cases we 
consider in this paper. The first case corresponds to inflow with linear shear while the 
second case corresponds to exponential shear described by a Gaussian distribution. The 
maximum Reynolds number is Rem = 1000 in both cases and thus a turbulent near-wake is 
developed. These two cases represent realistic situations corresponding to experimental and 
field conditions [see references in Furnes (1998) and Allen (1995)]. In equation (1), we refer 
to the type of structure as a beam if y # 0 and as a cable if c / 0. For the linear shear we 
examine a beam, and for the exponential shear a mixed beam-cable structure. We also note 
that unlike most of the previous studies where the aspect ratio of the cylinder was of the 
order of 100 or less (typically 20-50), here we consider a very large value of aspect ratio 
(> 500, see Table 1). 

The numerical simulation and mesh is similar to the one used in Evangelinos & 
Karniadakis (1999) with 64 points placed along the span, which is sufficient to capture the 
larger structures only. In order to process spectral information, 64 history points were 
placed in the near-wake of the cylinder. They are located equidistantly along the span, at the 
centerline and at x/d = 3 in the streamwise direction. Values of velocity and pressure fields 
are sampled at these history points. Handling such large computational domains requires 
a great amount of computational resources, especially long-time integration to achieve 
stationarity of the flow. The only other DNS we are aware of is the work of Vanka and 
collaborators (Mukhopadhyay et al. 1999), who study the laminar wake of a stationary 
cylinder at an aspect ratio of 24 using a finite volume method. 



Figure 1. Linear shear case. Iso-contours of crossflow velocity at Rem = 1000. Only the part corresponding to 
the large inflow is shown. Dark color: v = — 0-2; light color: v = 0-2. View normal to the (x, z) horizontal plane, 

where 80 < z/d < 400 and 0 < x/d < 12-5; flow is upward. 

Figure 2. Exponential shear case. Iso-contours of crossflow velocity at Rem = 1000. Dark color: v = — 0-2; light 
color: v = 0-2. View normal to the (x, z) horizontal plane, where 0 < z/d < 400 and 0 < x/d < 35; flow is upward. 
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1.1. VISUALIZATION OF VORTEX DISLOCATIONS 

The most prominent feature observed in shear flow over a bluff body is the shedding of 
vortices in cells of constant frequency. Because of the mismatch in frequency, vortex 
dislocations are generated between these cells. The presence of these vortex dislocations in 
wakes contributes to the transition to turbulence. Vortex dislocations are encountered in 
transitional and turbulent wakes as well as in laminar wakes, but in a more ordered fashion. 

Visualization of vortex dislocations is more clear at low Reynolds number. To this end, 
we first simulated shear flow past a flexible beam subject to forced and freevibrations for 
a pinned cylinder of aspect ratio L/d = 567 with a mean Reynolds number Re = 80-35 and 
a shear parameter ß « 8-8 x 10~4; these results and corresponding visualizations were first 
reported in Lucor et al. (2000). The frequency reduces as the cosine of the shedding angle 
(this angle gets steeper as the inflow velocity decreases); similar results were reported for 
a stationary cylinder in Mukhopadhyay et al. (1999). A localized lock-in of the left part of 
the beam, which corresponds to the side experiencing the large inflow, is obtained. This is 
similar to the lock-in cell observed in the experiments of Peltzer & Rooney (1985) which 
extended over 44 cylinder diameters in a cylinder with aspect ratio 107. Here the size of the 
first cell is larger than that, as both the amplitude of the vibration is larger and the shear 
parameter is smaller than the experiment [see also Peltzer & Rooney (1985)]. In addition, 
a significant increase of drag and lift forces was observed in this region of the structure. 

The structure, size and dynamics of the dislocations in the case of uniform inflow past 
a stationary cylinder have also been described by Williamson in more recent experimental 
work (Williamson 1992). He obtained a relationship between the different vortex structures 
across the boundary between two cells, and explained the interactions between these 
structures. He also established, in the case of transitional wakes, that the beating frequency 
of the dislocation between a cell of frequency/! and a cell of frequency f2 isfD =fx —f2. 
This has successfully been verified in our simulation for a moving cylinder, suggesting 
a universality of vortex dislocations. As regards the fluctuation of cell boundaries, our 
results confirm the experimental results of Stansby (1976) and Peltzer & Rooney (1985) that 
vibrations have a stabilizing effect. 

Similar visualizations were obtained for a freely moving cylinder. At higher Reynolds 
number, however, it is more difficult to discern such a clear pattern although a similar 
picture emerges. For example, for the linear shear flow at Rem = 1000 we use the crossflow 
velocity to qualitatively capture instantaneous vortex dislocations in Figure 1. In Figure 2, 
we plot the crossflow velocity contours in the near-wake for the exponential shear case. We 
observe a structure much more complex than the linear shear case but with distinct pockets 
of vortex dislocations, qualitatively similar to the structures we observed in laminar wakes 
and in linear shear. It is also clear from this plot that the flow does not correlate well along 
the span of the cylinder, and this invalidates the assumption of full-span correlation 
employed in the semi-empirical models such as SHEAR7 (Vandiver & Li 1994). 

2. VIV FOR LINEAR SHEAR INFLOW 

For this simulation the cylinder-to-fluid mass ratio is 2, the structural damping is set to 0-0 
in order to obtain a maximum response, and the beam phase speed is set to y = 4487-92 for 
lock-in; this corresponds to a natural nondimensional frequency for the beam of 0-1973. For 
this linear shear inflow, the maximum Reynolds number (at z/d = 0-0) and minimum 
Reynolds number (at z/d = 567) are 1000 and 607, respectively, with a mean value of 803-5. 
The shear parameter is ß x 8-8 x 10~4, smaller than most of the values used in previous 
experiments, where ß > 0-005 [see e.g., Peltzer & Rooney (1985)]. These values are close to 
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(a) 

Figure 3. Left: crossflow-displacement (r.m.s. values — horizontal axis) of the beam along the span normalized 
with the cylinder diameter. Right: corresponding power spectral density (x-axis: frequency nondimensionalized 

with maximum velocity; y-axis: power spectral density; z-axis: span of the cylinder. 

those used in the experiments reported in Fumes (1998) with the exception of Reynolds 
number, which is lower in the current simulations. 

2.1. DISPLACEMENT AND FORCE DISTRIBUTION 

In Lucor et al. (2000), we first reported results for this case; a standing wave response was 
obtained with the third mode excited. The location of the nodes, however, moves somewhat 
in time, which explains the small but nonzero r.m.s. values of the crossflow displacement. 
Specifically, a slight shift of these nodes towards the side of the low inflow in the shear inflow 
case compared to the uniform inflow cases is observed (Evangelinos et al. 2000). The 
standing wave partitions the span of the cylinder in three different cells. The maximum 
structural response of the beam is reached on the side of the high inflow. Figure 3 displays 
the standard deviation or r.m.s. values of the vertical displacement of the beam, (Y(z)/d)rms, 
(normalized by the cylinder diameter), and the spectrum of {Y(z)/d)rms. The maximum r.m.s. 
value of the crossflow displacement of the beam occurs within the first cell. The r.m.s. 
structural responses obtained in the second and the third cell are equal even though the 
beam experiences different inflow velocity. These amplitudes are about 20% lower than the 
maximum amplitude of the first cell. 

The natural frequency of the beam was set to 0-1973, which is the frequency response of 
a rigid cylinder subject to VIV at a Reynolds number of 1000 (Evangelinos & Karniadakis 
1999). If we represent the crossflow motion in the spectral space, we see that only one mode 
is excited. The structure frequency response is 0T83 (see Figure 3, right). The spectral 
density is maximum in each cell between the nodes. The wake frequency based on the 
Reynolds number associated with the mean inflow velocity from the shear inflow for 
a stationary cylinder is around 0-21 (Fey et al. 1998). Therefore, the coupled flow-structure 
system has a frequency response that deviates towards a smaller value from the imposed 
frequency, here/= 0-197, [see also Evangelinos & Karniadakis (1999)]. 

In Figure 4, we plot the mean values of the drag coefficient, (Cd(z))raean, and r.m.s. values 
of the lift coefficient along the span of the cylinder. The lift and drag coefficients represented 
along the span are normalized by the local inflow velocity. Due to the shear inflow the local 
Reynolds number along the span varies from 1000 to 607. The mean value of Cd(z) is about 
1-66. The maximum value of Cd(z) takes place at the midspan and its value is 13% larger 
than the maximum Cd{z) in the case of the uniform inflow [2-1 versus 1-82; see Evangelinos 
et al. (2000)] and 29% larger than the Cd{z) at the same location in the case of the uniform 
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Figure 4. (a) Distribution of (Cd)mean along the span, (b) Distribution of (C,)tms along the span. The local inflow 
velocity is used in the normalization. 
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Figure 5. Comparison of time-histories of drag force at different locations along the span: (a) z/d = 24806; (b) 
283-5; (c) 416-39. 

inflow [2-1 versus 1-55; see Evangelinos et al. (2000)]. The local minimum values of the Cd{z) 
are located at the nodes, in agreement with the uniform inflow results (Evangelinos et al. 
2000). 

The plot of (Ci(z))rms exhibits a large value in the third cell and a small value in the first 
cell. The response in the central cell is more intriguing and is split into two zones. The 
overall (C,(z))rms along the span has a mean value of 1-12. A maximum value of 2-22 is 
reached at z/d = 505 and a minimum value of 0-35 is achieved at the midspan. 

The plot of the lift coefficient can be related to the crossflow motion. The apparent 
inconsistency between the plots above could be explained by a phase analysis. The spectral 
density plot (not shown here) of the Q signal as a function of the frequency shows that only 
two frequencies are primarily excited. The first one corresponds to the frequency of the 
beam oscillation (/= 0-183, see also Figure 3), while the second one is an incomensurate 
higher frequency (/= 0-296), which we have not been able to relate to other frequencies. 
Clearly, the dominant frequency of C, along the cylinder is/= 0-183, especially within the 
third cell where large spectral densities are obtained. We have observed that the C; signal is 
in-phase with the beam motion in this cell. This might also explain why the displacement in 
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Figure 6. Spanwise (z) power spectral density of the ^-component of the velocity field (x-axis denotes frequency 
nondimensionalized with maximum velocity; y-axis denotes power spectral density, z-axis denotes the span of 

the cylinder). 

the third cell is comparable to the displacement of the second cell even though they 
experience different inflows. 

Finally, in Figure 5 we plot the time histories of the drag force at three different locations 
along the beam. These positions have been identified after a spectrum analysis of the 
crossflow i;-velocity and streamwise «-velocity (not shown here) in order to locate the 
positions of the main vortex dislocations. The first plot shows the drag force at z/d = 248-06, 
which is the location of the main vortex dislocation of this flow. The second graph is used as 
a reference and does not reside within a vortex dislocation. Finally, the third graph shows 
values of drag forces at another vortex dislocation of smaller intensity. There exists 
a significant low-frequency modulation at the first and the third locations compared to the 
second one. These low frequencies are the same as the leading frequencies of the streamwise 
«-velocity at these positions. 

2.2. FREQUENCY RESPONSE 

In Figure 6, we plot frequency spectra of the crossflow velocity along the beam. These 
frequencies can be interpreted as Strouhal numbers based on the maximum inflow velocity of 
the flow (Um = 1-0). The most distinguishing feature observed in Figure 6 is the shedding of 
vortices at constant frequencies. It can be shown that all these peak frequencies are, in fact, 
linear combinations of the harmonics of ft = 0-1996 with the harmonics of f2 = 0-2082' 
and they can be written in this case as 

\m - 3(n - 1)] fx + [4(n - 1) - m] f2, (2) 

where n = 2 and m = 1, 2,..., 16. It is interesting to note that/x is very close to the natural 
frequency for the beam (/= 0-1973) and/2 corresponds to the Strouhal number of the flow 
past a stationary circular cylinder at Reynolds number of 620 (Fey et al. 1998). We recall 
that 607 is the Reynolds number that corresponds to the minimum inflow velocity of our 
shear inflow. 



Figure 7. Instantaneous isosurfaces of pressure (predominant alignment spanwise) and streamwise 
vorticity (predominantly streamwise) from three-dimensional simulation. The cylinder is upstream at 

left. 

(a) (b) (c) (d) 
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Figure 8. Phase and spanwise average contours of spanwise vorticity for four phases of the cylinder 
motion cycle (upper plots), compared to (lower) similar (two-dimensional) phase averages from 

experiments at a somewhat higher Reynolds number (Govardhan & Williamson 2000). 
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Barring end-effects that may be induced by possible numerical artifacts, we can distin- 
guish several different frequency cells or frequency ranges. These cells do not match the cells 
defined by the beam displacement (see Figure 3). The length of these cells is approximately 
as follows. There is a large first cell from z/d = 50 to 250 with a frequency of/= OT83, 
which is the frequency of the crossflow motion of the beam. Then, the second cell lies 
between z/d = 250 and 370 with two frequencies/ = OT83 and 0T65. A third large cell is 
between z/d = 370 and 425, and the last cell fills the gap between z/d = 430 to the end of the 
beam span. In this case, the spectrum is not very sharp, and it is therefore more difficult to 
identify the characteristic frequency. Between the cells we notice buffer zones with small 
spectral density, low energy, e.g. at the midspan, or total energy distributed over a larger 
number of modes, e.g. at the second-node zone. Clearly, these cells are much larger than the 
cells encountered in stationary cylinders but this is expected for vibrating cylinders, 
especially since the shear parameter is very small in our case, and the aspect ratio is 
very large. The current results are certainly consistent with the experimental results and 
conclusions reported in Peltzer & Rooney (1985). 

3. VIV FOR EXPONENTIAL SHEAR INFLOW 

In inflows with large shear the possibility exists for excitation of high modes and of 
a multi-mode response (Kim et al. 1985; Vandiver 1991). This is evident in the case we 
consider here that corresponds to y = 345-248 and c = 25-8 (see Table 1). The correspond- 
ing eigenspectrum of a beam-cable structure pinned at both ends is determined by 

co2 = y2k4 1 + 
c2 

y2k2 —, 0) 
(L/d)' 

where n is the mode number. Substituting the parameters of Table 1 we obtain a non- 
dimensional frequency of 0-193 for mode n = 12. Given that the Strouhal number at 
Re ~ (9(1000) is about St x 0-2, we verify that indeed the possibility exists for such high 
modes to be locked-in to the wake. 

The specific form of shear profile imposed at the inlet in this case is described by 

U(z) = (1 - Uf) e'a(z'df + Uf,    Uf = 0-3,   a = 5-0 x 10"5 (4) 

with the high inflow velocity located at z/d = 0. The shear parameter in this case is 
ß « 0-005. 

3.1. DISPLACEMENT AND FORCE DISTRIBUTION 

In Figure 7, we plot the time-history of the crossflow displacement along the spanwise 
direction. We see that a mixed response is established, which can be characterized as hybrid 
between a standing wave and a traveling wave, unlike the linear shear case where a lock-in 
standing wave pattern was obtained. The r.m.s. values of the crossflow displacement along 
the span of the cylinder are plotted in Figure 8 (left) along with the corresponding spectrum 
(right) showing a multi-mode frequency response. Unlike the linear shear case, here the 
structure oscillates at low frequencies. To investigate further this multi-mode response we 
obtained the excited modes by analyzing two different instantaneous responses in 
wavenumber space (plot not shown here). The highest contributing modes are n = 14-16 
which agree with the results of Triantafyllou et al. (1994), a code based on empirical 
modeling of the flow and eigenfrequency analysis for the structure. The span-averaged value 
of the crossflow displacement predicted by the current simulation is 0-22 compared to 0-243 
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obtained by Triantafyllou et al. (1994). Also, comparison of the instantaneous response 
profiles with field measurements (performed on a drilling riser with similar geometric 
properties and responding to a current with similar shear parameter) between the locations 
27 < z/d < 55, is very good (Allen 1995). An important difference, already mentioned, 
between the linear shear response and the exponential shear response is that in the former 
a standing wave pattern is observed, whereas in the latter a hybrid standing-traveling wave 
pattern prevails. 

3.2. FREQUENCY RESPONSE 

We have already seen that the beam-cable structure oscillates at a low frequency. This 
frequency is approximately the same as the low frequency in the wake (plot not shown here) 
on the low inflow side. In contrast, the lift follows a response similar to the wake on the side 
of the high-velocity inflow. Therefore, unlike the linear shear case where the frequency 
response of lift, the wake, and the structure are the same, in the case of exponential shear the 
lift and the beam-cable response are not the same. 

4. SUMMARY AND DISCUSSION 

In this paper, we have addressed the effects of linear and exponential shear profiles in VIV of 
very long flexible cylinders using spectral DNS. The main difference between the two cases 
is that in linear shear the structural response resembles a standing wave pattern, whereas in 
the exponential shear case it resembles a mixed standing-traveling wave pattern. For the 
parameters considered here, the linear shear led to a low-mode (mode 3) response while the 
exponential shear led to a multi-mode response with modes as high as 12 and 14 participat- 
ing. 

More quantitatively, the difference in the two cases can be summarized in the plots of 
Figure 9, which include the frequency response of the wake and the structure as well as the 
natural frequency of the structure. The crossflow velocity at points (x/d = 3, y/d = 0, z/d) is 
analyzed to obtain the shedding frequency. The most distinguishing feature in these plots is 
the shedding of vortices at constant frequencies, as it is evident by the values of the Strouhal 
number which are on parallel lines. This is more pronounced for the linear shear case, for 
which we also observe that the beam locks on to a wake frequency which dominates on the 
side of the high inflow. This frequency is lower than the natural frequency of the beam for 
mode n = 3. On the other hand, for the exponential shear we need to consider different 
modes because of the multi-mode response of the structure. The structure response (non- 
dimensional) frequency varies from about 0-05 to just above 0-23 with corresponding 
excited natural modes from n = 3 to 12. 

We have found that the nodes of the structure are not always located exactly at 
a boundary between two cells. We also obtained cells of constant shedding frequency, which 
are much longer than the cells in stationary cylinders reported in experimental work. 
However, their size is consistent with the experimental results and corresponding con- 
clusions reached in the works of Stansby (1976) and Peltzer & Rooney (1985). It was 
reported in these works that the size of the cells scales proportionally to the amplitude of 
crossflow displacement and inversely proportional to the shear parameter. Moreover, we 
have seen in our simulations that the larger aspect ratio of the flexible cylinder allows for 
larger cellular patterns. This too is consistent with the experimental results of Peltzer (1982) 
if we extrapolate from his range of aspect ratio (L/d ~ 20-100) to our values (L/d ~ 
567-914). 
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Figure 9 Frequency distribution of wake and structure along the span showing cellular shedding and multi- 
mode response, (a) linear shear; (b) exponential shear. Circles denote dominant frequency of crossflow velocity and 
Tangles dominant frequency of the structure response. The maximum inflow velocity is used in the normalization 

of the frequency. 

With regards to force distribution on the structure, we have found that vortex disloca- 
tions have a significant effect on the instantaneous force distributions along the span of the 
cylinder. The location of vortex dislocations in the wake can best be obtained by searching 
for energetic low frequencies of the streamwise velocity component (plot not shown here). 
We have observed that there exists a significant modulation of the forces on the body by 
these low frequencies at the spanwise locations corresponding to the vortex dislocations. 
This demonstrates that strong vortex dislocations can have a substantial effect on the forces 
acting on the body, and such effects have to be taken into account when constructing 

low-dimensional predictive models. 
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This study is concerned with the vortex-induced vibrations of a flexible cantilever in a fluid flow. 
Our cantilever comprises a leaf spring encased within a rubber flexible cylinder, restricting the 
vibrations of the body in a water channel flow to principally transverse motion. It is found that 
the transverse amplitude response of the cantilever has a marked similarity with transverse 
vibrations of an elastically mounted rigid cylinder, in that there is a clear initial branch 
extending to high amplitudes, with a jump to a lower branch response, as normalized velocity is 
increased. The continuous initial branch suggests that a distinct upper branch does not exist for 
the cantilever, as is found for a rigid cylinder under similar conditions of low mass and damping. 
Good agreement is found between the response amplitude and frequency for two "identical" 
cantilevers, one set up by Pesce and Fujarra, where strain is measured to infer the body 
dynamics, and the other arrangement by Flemming and Williamson, where the tip motion is 
measured using optical techniques. An interesting large-amplitude response mode is found at 
higher normalized velocities (17* > 12) outside the principal synchronization regime (typically 
U* = 4-8), which is observed for an increasing velocity, or may be triggered by manual 
streamwise disturbances of the body. This vibration mode is due to a coupled streamwise- 
transverse motion, where the streamwise amplitude becomes non-negligible, and may be related 
to a further vibration mode at high normalized speed, found for a vibrating pivoted rod, by 
Kitagawa et al. (1999). © 2001 Academic Press 

1. INTRODUCTION 

IN THIS WORK, we are concerned with the vortex-induced vibrations of a flexible cantilever in 
a fluid flow. This configuration, of some practical significance, has received only little 
attention in the literature to date. The early studies of Vickery & Watkins (1964) and King 
(1974) demonstrated large-amplitude tip vibration of around 1-5-1-6 diameters, while recent 
related studies of cantilever dynamics have been undertaken at Säo Paulo (Fujarra et al. 
1998; Pesce & Fujarra 2000), showing comparable tip amplitudes of around 1-7 diameters. 
The relation between the dynamics of such cantilevers and elastically mounted rigid 
cylinders has been briefly addressed in Pesce & Fujarra (2000), and it is apparent that the 

0889-9746/01/040651 + 08 $35.00/0 © 2001 Academic Press 
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amplitude variation, as one increases flow velocity, exhibits a similar discontinuity between 
two response branches to what is found in elastically mounted rigid cylinder studies. 
A comparison between the peak amplitudes for cantilevers and rigid cylinders was under- 
taken by Griffin & Skop (1976). In that study, they attempted to collapse the peak 
amplitudes versus a mass-damping parameter in what we call a "Griffin plot" (Khalak 
& Williamson, 1999), although even using an "eigenmode factor", y (where y = 1-305), to 
normalize the cantilever amplitude, the peak values do not collapse well. In a further 
relevant study, the dynamics of pivoted rods has been investigated by Kitagawa et al. (1999), 
who observe a vibration mode at high speed, outside the principal synchronization regime! 
which they attribute to the influence of an end cell of lower frequency vortex shedding near 
the tip of the rod. A more recent study of vibration of pivoted rods has been presented in 
a seminar by Atsavapranee & Wei (1999), who find large-amplitude oscillations comparable 
to the present cantilever dynamics. 

In the present investigation, the cylindrical cantilever is constructed of an elastomeric 
material, but within this structure is a thin flexible aluminium plate, allowing much more 
flexibility in the transverse direction to the fluid flow, than exists in the stream wise direction. 
In the case of a cantilever whose flexibility is the same in the transverse and streamwise 
directions (Pesce & Fujarra 2000), there are distinct similarities of the response with the 
elastically mounted rigid cylinder case (Khalak & Williamson 1997a), as shown in Figure 1. 
The cantilever study was chosen to have a similar mass (m*) and damping (£) to the rigid 
cylinder arrangement [m* = (oscillating mass)/(displaced fluid mass) = 2-4; leading to 
a mass-damping parameter m*£ = 0016, where £ = structural damping ratio]. Although 
the rigid cylinder studies of Khalak & Williamson (1996,19976,1999) show clearly a three- 
branch type of response, comprising an initial, upper, and lower branch of amplitude 
response, it appears that the response of the cantilever in Figure 1 exhibits a single "initial" 
branch, which then drops to a lower branch; in essence showing only a two-branch type of 
response, despite the very low mass and damping. The case of the flexible cantilever cannot 
be considered equivalent to the elastically restrained rigid cylinder, because the amplitude 
varies along the span in the case of the cantilever. Nevertheless, the response amplitude 
plots in Figure 1 are surprisingly similar in overall shape, especially along the lower segment 
of the initial response branch, and along the lower branch. This agreement is markedly 
improved, as in Figure 1, if one dispenses with the classical use of the "eigenmode factor", 
mentioned above, which has been employed in past work to normalize cantilever ampli- 
tudes. 

An interesting point in the cantilever studies of Pesce & Fujarra (2000) is the existence, at 
the highest oscillation amplitudes (at the top of the left-hand response branch in Figure'1), 
of coupled streamwise-transverse oscillations. It was felt that by using a leaf spring in the 
present investigation, these stream-wise oscillations and their coupling with the transverse 
vibrations, could be largely prohibited. While this might be true for the principal synchroni- 
zation regime (U* = 4-12), where the streamwise oscillations are negligible, we find instead 
that such a coupling can still exist at higher speeds. For the present cantilever, the stiffness 
and natural frequency are greater in the streamwise direction, which therefore shifts the 
regime of coupling to higher normalized flow speeds. What might be found surprising is the 
large magnitude of the oscillation amplitudes due to this coupling, and these are discussed 
later, with reference to Figure 4. 

2. EXPERIMENTAL DETAILS 

The cantilever in the present work is constructed of rubber, but within this cylindrical 
material is a thin flexible aluminium plate, as discussed earlier. The diameter of the cylinder 
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Figure 1   Comparison between amplitude response (A*) for a flexible cantilever and an elastically mounted rigid 
cylinder, as a function of normalized velocity, U*. The cantilever in this case has the same stiffness in the 

streamwise and transverse directions. O Flexible cantilever; ■ Rigid cylinder. 

is 10 mm, giving an immersed length-diameter ratio of 41. Two "twin" cantilevers have been 
constructed expertly at University of Säo Paulo, and subsequently placed in two different 
water channel facilities, one in Säo Paulo (and at University of Michigan during the 
sabbatical of CPP and ALCF in 1999), and one at Cornell. The ratio of stiffness between the 
streamwise-transverse oscillations is 18-9. Both of the cylinders have a mass ratio, m* = 1-3 
and a mass-damping (m* 4- CA){ = 0-185 and are identically clamped. The blockage ratios 
are 2-6% (Cornell) and 1% (Michigan). The free-stream turbulence is less than 0-9% in both 
facilities. Over the range of Reynolds numbers, Re = 1000-2500, we take the Strouhal 
number as 0-208. The "Brazilian" cantilever is arranged with strain gauges, to infer the tip 
amplitudes. The tip amplitudes for the "Cornell" cantilever are measured directly using an 
optical bi-axial displacement transducer. In both arrangements, the initially vertical canti- 
lever is clamped just above the water surface, and the gap between the cantilever tip and 
a false end plate within the channel, is kept close to 1 mm. 

3. DYNAMICS OF THE FLEXIBLE CANTILEVER 

Corresponding with the recent work in Pesce & Fujarra (2000), the response amplitude 
(A* = A/D), as a function of normalized velocity (I/*) seems to exhibit two distinct 
branches, labelled here as the "initial" branch and the "lower" branch, and shown in 
Figure 2. (We define the normalized velocity by U* = U/f„D, with U = free-stream velocity, 
/„ = the natural frequency in water, D = diameter). Comparisons between techniques to 
measure amplitude response (computing the tip amplitude from strain data, versus using 
direct measurement of the tip deflections using optical methods) are quite reasonable, as 
shown in Figure 2. Despite the differences in the amplitudes of the lower branch, the 
oscillation frequencies match very well, and show similar behaviour to what is found for 
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These amplitudes are superposed onto a map of vortex formation modes (2S, 2P, etc) as defined in Williamson 

& Roshko (1988). 

rigid-cylinder vibrations. They lie well above the natural frequency (for U* > 6), and this is 
a characteristic of low mass ratio vortex-induced vibrations, as shown for example in 
Khalak & Williamson (1997ft) and Gharib et al. (1998). In the presentation of Figure 2, the 
"initial" branch appears to be a single continuous branch. 

It has recently been clarified by Govardhan & Williamson (2000) that elastically mounted 
rigid cylinders exhibit a three-mode response (initial-upper-lower branches) for low mass- 
damping (m*Q, and a two-mode response (only initial-lower branches) for high mass- 
damping. If we now directly compare the cantilever data, in Figure 3, with free vibrations of 
a rigid cylinder (Govardhan & Williamson 2000), at similar mass ratios (m* = 1-3 and 1-2, 
respectively), they both exhibit an initial branch and a lower branch. However, the rigid 
cylinder case exhibits the three-mode type of response, and it is known that the data above 
A* = 0-6 corresponds to a separate "upper" branch, with a distinct vortex formation mode. 
The data in Figure 3 indicate that possibly the cantilever also has an "upper" branch, 
although to prove this point one would need to demonstrate a discontinuity in the initial 
response branch. Such a discontinuity is quite clear in the case of the rigid cylinder. In the 
case of the cantilever, it is possible that two vortex formation modes, defined as 2P and 2S 
mode (Williamson & Roshko 1988) exist simultaneously along the span, as suggested by the 
mode boundaries in Figure 3. Such a "hybrid" mode was found by Techet et al. (1998) for an 
oscillating tapered cylinder. Further understanding of this point would be forthcoming with 
the implementation of the PIV technique on this problem, and such experiments are 
presently planned. 

A further interesting result for the cantilever is the large-amplitude transverse vibration 
response for high speeds, U* > 12, in Figure 4. (These results are from the cantilever fitted 
with strain gauges, and comprise a separate set of experiments to those in Figure 2. We also 
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Figure 4. Tip amplitude and frequency response versus normalized velocity, as measured from the cantilever 
instrumented with strain gauges: ■, increasing velocity; D, decreasing velocity. 

include here the upper amplitudes for U* > 12, which were omitted from Figure 2, for 
clarity.) These data, along the high-amplitude branch for U* > 12, are for increasing 
velocity, though evidence that the high-amplitude branch can be reached for decreasing 
velocities will be shown in a further more comprehensive study (Fujarra et al. 2001). The 
cause of this mode is apparently related to the simultaneous presence of streamwise and 
transverse vibrations. (This might be expected, because the natural frequency in the 
streamwise direction is roughly 4 times that for the transverse direction, yielding an 
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expected streamwise response at around U* ~ 20.) In the other set of experiments (using 
optical diagnostics), shown in Figure 2, the square symbols for U* > 12 at amplitudes 
A* ~ 0-25, correspond to conditions where the streamwise and transverse vibrations are 
comparable. There is evidently a strong correlation between the streamwise and transverse 
vibrations, as we find that the frequency of transverse vibration (square symbols in Figure 2) 
is exactly half the frequency for the streamwise oscillations, as measured using the optical 
technique. One may deduce that the frequency of the high-speed response of Figure 4 also 
reflects a streamwise-transverse coupling, and in fact this is clear from visual observation in 
the experiments, where the cantilever tip follows a figure-of-eight trajectory. 

A similar response mode has been found by Kitagawa et al. (1999), at high normalized 
velocities, U* = 14-17, which they attribute to the influence of forcing from a vortex 
shedding cell of low frequency adjacent to the tip of their pivoted rod. It is conceivable that 
their response mode could also be associated with a coupled streamwise-transverse motion 
as found in the present work, although their oscillation amplitudes are far smaller, 
A* x 0-05, and no streamwise amplitudes were measured to investigate this point. 

4. CONCLUSIONS 

In summary, vortex-induced vibrations of a cantilever exhibit distinctly similar response 
modes as found for the elastically restrained rigid cylinder, despite the fact that the 
cantilever oscillation amplitude varies along the span. As velocity is increased, it appears 
that there are two branches of response in the case of the cantilever; whereas in the case of 
the elastically mounted rigid cylinder, three response branches are found, at comparable 
values of low mass and damping. Evidence for the existence of three response branches for 
the cantilever (not only an initial and lower branch, but also a separate upper branch) would 
require demonstration of a discontinuity in the initial response branch. It is planned to 
investigate the wake vortex dynamics at different points along the span, using the DPIV 
technique to determine wake vorticity. 

A high-speed mode of large-amplitude response has been found, which is outside the 
principal synchronization regime, and which is associated with a streamwise-transverse 
vibration coupling. The natural frequency of the cantilever is higher in the streamwise 
direction (it has been made suffer in that direction by enclosing a leaf spring within the 
rubber cantilever), and so the streamwise oscillations are excited at higher speeds. When 
streamwise vibrations are stimulated, the transverse frequency of this high-speed mode 
corresponds to precisely half the streamwise vibration frequency. Although the high-speed 
vibration mode of a pivoted rod, investigated by Kitagawa et al. (1999), yields much smaller 
amplitudes, it is conceivable that their vibrations may be related to coupled streamwise- 
transverse oscillations of the type observed here, since they also used a leaf spring as their 
pivot, restricting most of the motion to the transverse direction. 
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Two-dimensional and quasi-three-dimensional numerical methods have been employed to 
simulate the vortex-induced vibrations of a circular cylinder. A low Reynolds number two- 
dimensional study at low mass ratio and zero damping revealed lock-in across a large range of 
reduced velocities. For the low mass ratio cylinder simulated, the oscillatory frequency was 
found to be controlled by the fluid via its added mass. Oscillations far from the body's natural 
frequency were observed. The shear stress contributions to the transverse force acting on the 
body were very significant and play an important role in the dynamics of low Reynolds number 
vortex-induced vibrations. The quasi-three-dimensional method was employed to simulate the 
flow past a long stationary cylinder in shear flow. Cellular shedding was observed in its wake. 
The free transverse flexible vibrations of the same body exhibited significant spanwise correla- 
tion over a large length of the body despite the sheared inflow. 

© 2001 Academic Press 

1. INTRODUCTION 

RISER PIPES ARE LONG FLEXIBLE, substantially vertical, circular cylinders used in the offshore 
industry to convey fluids from the sea bed to sea level and vice-versa. For exploration in 
ultra deep waters, risers of up to 2000 m length, yielding aspect ratios of order 103, have 
been proposed. The Reynolds number associated with these flows is typically of order 105. 

Flexibly supported cylinders may undergo vortex-induced vibrations, through which the 
vortex-shedding frequency may lock on to a frequency of vibration of the structure. The 
range over which lock-in occurs depends on the vibration amplitude and on the mass and 
damping ratios. Flow-induced vibrations are a multiple-degree-of-freedom problem, in 
which coupling exists between motions in-line with and transverse to the stream. The 
amplitude of transverse oscillations can be of the order of one diameter and therefore 
present a potent source of fatigue as well as the possibility of clashing in multiple-cylinder 
assemblies. 

Risers can be subject to currents with significant shear profiles, giving rise to large 
variations in the vortex-shedding frequency with depth. At any one depth the mode of 
vibration closest in frequency to the local natural vortex shedding frequency is the most 
likely to be excited. However, the influence of other modes of vibration excited by the 
current at other depths may result in constructive or destructive interference. 

The vortex-induced vibrations of rigid cylinders have recently received renewed atten- 
tion. In particular the multiple branching behaviour and hysteresis effects observed for the 
amplitude of free transverse vibrations of a circular cylinder at low mass and damping ratios 
have been the focus of many works (Brika & Laneville, 1995; Khalak & Williamson, 1999; 
Newman & Karniadakis, 1995). Due to the high aspect ratios of riser pipes, three-dimen- 
sional flow simulations at realistic Reynolds numbers are still considered infeasible. Lucor 
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et al. (2000) have simulated the flow over a flexible cable of aspect ratio 567, subject to 
a sheared current with a peak Reynolds number of 1000, a long way short of the values 
required for full riser computations. 

Consequently, approximate techniques such as strip theory (Herfjord et al. 1999) have 
been used to simulate riser response. The technique employed in the present work is 
a quasi-three-dimensional extension of strip theory. A two-dimensional hybrid Euler- 
ian/Lagrangian Navier-Stokes code (Graham 1988) is used to simulate the flow around 
several spanwise sections of the riser. These are linked hydrodynamically through a three- 
dimensional large-scale vortex lattice representation of the wake (Giannakidis & Graham 
1997). A three-dimensional structural dynamics model is coupled to the fluid solver so as to 
predict the response. 

The work presented here focuses on the flow-induced transverse vibrations of a rigid 
two-dimensional low mass cylinder, elastically mounted with zero damping, so as to excite 
a large response, and on the transverse vibrations of a long flexible cylinder in sheared flow. 

2. SIMULATION METHOD 

The two-dimensional Navier-Stokes solver and its quasi-three-dimensional extension are 
briefly described below along with the structural dynamics models and the fluid-structure 
interaction procedure. For a more detailed account see Willden & Graham (2000). 

2.1. FLUID DYNAMICS MODELS 

A first-order simulation is used to solve the two-dimensional incompressible Navier-Stokes 
equations in their velocity-vorticity formulation: 

Scoz      ,    „s , 
—+ (u-V)coz = vV2coz, (1) 

where caz is the spanwise vorticity component. A time-split approach is followed, whereby 
the diffusion of vorticity is treated in an Eulerian fashion by modelling the flow variables 
using linear finite element approximations on an unstructured mesh, and the convection is 
handled using a Lagrangian approach that employs discrete point vortices. The velocity 
field is evaluated through the finite element solution of the two-dimensional derivative of 
the Poisson equation relating velocity and vorticity: 

V2U = -VAö). (2) 

The Poisson equation relating pressure to velocity (divergence of the momentum equa- 
tions), is solved using the finite element method to yield the pressure components of the 
body forces. Those due to viscous shear stresses at the wall, TW, are computed from the 
vorticity at the wall, according to TW(S) = -\mz{s\ where s defines the tangent to the wall. 

In three dimensions, multiple two-dimensional computational planes are placed along 
the cylinder span. These are linked hydrodynamically using an inviscid unsteady three- 
dimensional vortex lattice. The lattice is constructed so as to represent the three-dimen- 
sional vorticity field. This is done by updating its spanwise vorticity content from the 
underlying two-dimensional vorticity fields. The remaining vorticity components are de- 
duced by constructing the lattice so as to be divergence free. The lattice is allowed to 
self-convect over the step. Once a part of the lattice passes the downstream extremities of 
the computational planes it can no longer be up-dated and is allowed to self-convect and 
distort into the far wake. The Biot-Savart law is used to retrieve velocity information from 
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the lattice, including dw/dz, the spanwise derivative of the spanwise velocity component. 
This provides a source term in the sectional solution of equation (2), which allows mass 
conservation in three dimensions to be retained. The far-field velocity boundary conditions 
of the computational planes are modified to include the velocities induced by the lattice. 

2.2. STRUCTURAL DYNAMICS MODELS 

A spring-mass-damper model is used to simulate the single-degree-of-freedom transverse 
vibration of a two-dimensional cylinder. The equation of motion for the cylinder displace- 
ment, y, in response to fluid loading, represented by the lift coefficient CL, is given by 

m^y + 2ßm(2nfn) ^ + m(2nfn)
2y = CL{t) ^- D, (3) 

where m, f„ and ß are the mass of the cylinder per unit length, the natural frequency of 
cylinder vibration and the fraction of critical viscous damping respectively; U, p and D are 
the upstream velocity, the density of the fluid and the cylinder diameter, respectively. 

The three-dimensional flexible cylinder is modelled as a bending beam under pre-tension 
using a linear finite element implementation of the Bernoulli-Euler beam equations. The 
model permits three degrees of freedom at each of the finite element nodes, axial and 
transverse displacements and a rotation about an axis normal to the plane of the displace- 
ments. The model incorporates tension, buoyancy and gravity but neglects structural 
damping. 

The response of the cylinder to the fluid loading is calculated explicitly by both structural 
dynamics models. The fluid dynamics is subsequently solved implicitly. 

3. RESULTS & DISCUSSION 

3.1. TWO-DIMENSIONAL FREE TRANSVERSE VIBRATIONS OF A FLEXIBLY MOUNTED CYLINDER 

The response of a circular cylinder free to vibrate in the transverse direction has been 
computed over a range of reduced velocities, Vr = U/fnD, from 2-5 to 16. The simulations 
were performed on a continuous basis by incrementing the Reynolds number in small 
positive steps, starting with the cylinder at rest at Re = 50 (Vr = 2-5) and terminating at 
Re = 320 {Vr = 16). The purpose of this was to ensure that the simulations incorporated any 
fluid memory effects that may be seen experimentally with increasing flow speed. The mass 
and damping ratios, m* = 2m/pD2 and ß, of the cylinder are 1 and 0 respectively. 

The nondimensional response amplitude, A/D, is shown in Figure 1 over the range of 
Vr simulated. The response amplitude at the start of the simulation, Vr = 2-5, is 0-02D. 
Relatively small amplitude oscillations are maintained until Vr = 3-1, after which the 
response increases markedly with Vr. The increasing response amplitude starts to saturate 
at Vr = 4-7 at an amplitude of 0-47D. It is not until Vr = 6-1 that the response peaks at 
0-50D. This amplitude is approximately maintained until the end of the simulation at 
Vr = 16. Although the flow past a circular cylinder is considered to be three-dimensional 
past a Reynolds number of approximately 190, the simulation was continued past this 
point, Vr = 9-5, on the premise that lock-in has two-dimensionalizing effects. 

The oscillatory and vortex-shedding frequencies are defined as/0 and/,, respectively, with 
f0 =/„ at lock-in. It is apparent that at this low mass ratio the oscillatory and vortex- 
shedding frequencies remain locked-in to one another throughout the Vr range simulated. 
fo/fn (Figure 1) does not display the step at/0//„ « 1 that characterizes lock-in for moderate 
to high mass ratios. Instead, the variation in/0 is close to linear and varies from 0-29/„ at the 
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100 200 300 
Re 

Figure 1. Amplitude and frequencies of a circular cylinder vibrating freely in the transverse 
direction for m* = l,ß = 0: A, A/D; 0,f0/f„; O,f0/fN. 

start of the simulation to 3-45/„ at its end. This infers that for this very low mass ratio, the 
fluid is dominant over the structure in controlling the oscillatory frequency throughout 
lock-in. The reverse of this is true where the lock-in step is observed. 

The ability of the structure to oscillate far from its natural frequency is better understood 
by considering the role of the added mass, ma = L/A(2nf0)

2, where L is the amplitude of the 
component of the fluctuating lift force in phase with body displacement. Zero structural 
damping infers that L is necessarily the amplitude of the total fluctuating lift force; hence, 
L(t) = L sin(2nfvt). This definition of ma allows equation (3), in the absence of damping, 
ß = 0, and for the case of lock-in,/„ =/„, to be written as 

(m + mtt) -jp- m(2nfn)
2 y = 0, (4) 

where y{t) = A sm(2nf0t). An effective natural frequency of the combined fluid and structure 
system, fN, may be defined according to f* =/„2/(l + mjm). Non-dimensionalizing f0 by 
fN reveals that the body oscillates at or very close tofN throughout lock-in (Figure 1). 

The ratio ma/m describes the relative magnitudes of the fluid and body inertia forces. At 
high values of this ratio the body behaves as if it is controlled by a forced motion at the 
vortex-shedding frequency. At low values the body oscillates near its natural frequency. 
Figure 2 displays mjm against/„//„ for the simulated data. At the start of the simulation 
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Figure 2. The added mass, ma, of a circular cylinder vibrating freely in the transverse direction for 

m* = 1, ß = 0. 

ma/m peaks at 9-03. The added mass rapidly decreases with increasing Vr until it reaches 
zero, somewhere between Vr = 5-5 and 5-6, at which point the body is free to oscillate at its 
natural frequency,/„//„ = 1. Past this point, the added mass becomes negative as the lift 
force moves out of phase with the displacement. As Vr is increased still further, ma/m 
asymptotes to a value close to — 1; the minimum value achieved is —0-91 at Vr= 16. 

Figure 3 depicts a selection of vortex particle images of the wake of the oscillating 
cylinder along with corresponding time traces of response, lift and drag coefficients, y/D, 
CL and CD, respectively. Also shown are time traces, over different time periods for clarity, 
of the contributions to CL by pressure forces and shear stresses, CLp and CLf respectively. 

This figure depicts simulations at Vr = 3-9, where CL(t) is in phase with y(t), at Vr = 5-5, 
approximately at the phase change, and at Vr = 10.0, where CL(t) is in anti-phase with y(t). 
The shedding in all cases is of the 2S type. The increasing oscillatory amplitude with Vr is 
responsible for a breakdown in the stability of the von Kärmän street due to larger 
transverse separations between vortices. Consequently the staggered vortex wake has to 
readjust itself in the middle-wake region, by rolling up and coalescing like signed pairs of 
vortices to form larger vortex structures, as depicted in the wake images for Vr = 5-5 and 
10-0. The time traces for these two cases show slight modulations for which the frequencies 
are given by the differences in the frequencies of the near- and far-wake vortex structures. 

The in-phase and anti-phase nature of y/D and CL are best observed for cases Vr = 3-9 
and 10-0, respectively. Less clear is the relative phase of the traces for Vr = 5-5 which is made 
more complex by higher frequencies. A small phase difference between the pressure and 
shear stress contributions to CL can be observed for Vr = 3-9. Both are approximately in 
phase with y/D. For the case just prior to the phase change, Vr = 5-5, there is a phase 
difference of approximately 180° between CLp and CLf; CLp is in anti-phase with the 
displacement whilst CLf remains in phase. This phase difference between CLp and 
CLf persists until the end of the simulation at Vr = 16, as shown in the traces for Vr = 10-0. 

Much of this information is summarized by Figure 4. The high relative magnitude of 
CLf with respect to CLp, in particular before the phase change (/„ =/„), is evident. The 
pressure contribution on its own changes phase with respect to the response between 
Vr = 4-8 and 4-9. The peak in the overall lift coefficient occurs at Vr = 3-9 some way short of 
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Figure 3. Particle images of the wake, response, lift and drag coefficient (y/D, CL and CD) histories 
of a circular cylinder vibrating freely in the transverse direction; m* = 1, ß = 0, at reduced velocities, 

(a, b, c) Vr = 3-9, 5-5 and 10-0. 

the Vr of the maximum response amplitude. This is in contrast to the higher Reynolds 
number observations of Khalak & Williamson (1999) who observed a peak in CLrms just 
prior to the maximum response. The high relative magnitude of CLf at these low Reynolds 
numbers undoubtedly plays a role in these discrepancies. 
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Figure 4. Variation of the component of the lift coefficient, in phase with body displacement, and its 
constituent parts with oscillatory frequency, for a circular cylinder vibrating freely in the transverse 

direction, m* = 1, ß = 0: A, CL; O, CLp; O, CLf. 
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Figure 5. Variation of the constituent parts of the component of the lift coefficient in phase with 
body velocity with oscillatory frequency for a circular cylinder vibrating freely in the transverse 

direction, m* = 1, ß = 0: O, CLp; O, CLf. 

Although CL must remain entirely in phase or out of phase with y/D since ß = 0, the 
contributions to CL from CLp and CLf may have components, of equal and opposite sign, in 
phase with the body velocity (Figure 5). The component of CLp in phase with velocity 
provides an excitation force as it remains positive throughout. This is balanced by the 
equivalent component of CLf which acts as hydrodynamic damping. The magnitudes of 
these components are not insignificant in comparison to CL. The extraordinarily large shear 
force would appear to be constraining the motion that would otherwise be excited by the 
considerable component of CLp in phase with the body velocity. 

3.2. FREE TRANSVERSE VIBRATIONS OF A THREE-DIMENSIONAL FLEXIBLE CYLINDER 

The quasi-three-dimensional solver has been used to simulate the flow past a rigid 
cylinder, length 25 m and aspect ratio 100, subject to a sheared inflow. The inflow 
Reynolds number is linearly sheared from 200 at its top end to 100 at its bottom end. 
A particle and lattice image of the wake is shown in Figure 6. Although this figure yields 
limited insight into the structure of the wake, it demonstrates how the computational 
method works. Nine equally spaced computational planes are depicted in this figure, each 
separated by 10D. 
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Re=200 

Figure 6. Particle and lattice visualisation of the flow behind a circular cylinder subjected to 
a sheared onset flow. 

Figure 7 displays the spanwise Stouhal number variation as well as the time evolution of 
the lift coefficient acting on the cylinder. The Strouhal number varies from 0-156 at the low 
Reynolds number end to 0-185 at the upper end. The time evolution of CL shows signs of 
cellular shedding, as has been widely reported for sheared flow. However, one must be 
cautious in identifying dislocations between such cells, given the coarse nature of the 
spanwise resolution. 

The cylinder was then released and allowed to oscillate freely in the transverse direction, 
with its ends pinned. The stiffness and applied axial tension are 19-8 MNm2 and 14-8 MN, 
respectively. The tension was set deliberately high in order that the fundamental mode be 
excited. Buoyancy and gravity forces are ignored, and structural damping is set to zero. The 
mass ratio, m* = 2m/pD2, is 4-26, where m is the mass per unit length of the body. 

The response (Figure 8) is close to that of the fundamental mode, except that the peak 
displacement, 0-36D, is found towards the lower Reynolds number end at z/D = 44. The 
frequency of oscillation, f0, is l-05/„, where/„ is the frequency of the fundamental mode in 
a vacuum. In contrast with the lower mass ratio case simulated in two dimensions, the 
structure is dominant in modifying the shedding frequency towards the natural frequency. 
As indicated by Figure 9, the shedding frequencies at the end points remain relatively 
unperturbed by the oscillation, whereas those in between are significantly modified. 

The lift coefficient evolution (Figure 9) shows significant spanwise correlation between 
z/D = 25 and 75, over which the shedding and oscillatory frequencies remain locked. At the 
location of the peak response, z/D = 44, the CL evolution shows an abrupt phase change. 
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Figure 7. Span wise Strouhal number, S, variation and time evolution of the lift coefficient, CL, 
acting on a stationary circular cylinder subjected to a sheared onset flow. 
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Figure 8. Response envelope of a circular cylinder subjected to a sheared onset flow, vibrating 
freely in the transverse direction. 

On the lower Vr side, z/D < 44, CL and y/D remain in phase; towards the higher Vr 

end, z/D > 44, CL and y/D are in anti-phase. This phase change is not altogether unsurpris- 
ing as to some degree it mimics the changes one would expect from a variable reduced 
velocity. 

4. CONCLUSIONS 

The low Reynolds number two-dimensional simulations exhibited lock-in throughout. The 
ability of the fluid at low mass ratios to dominate over the structure in oscillating the body 
far from its natural frequency was observed. This was facilitated by considerable changes to 
the added mass. Very high shear stress contributions to the lift force were observed, which 
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Figure 9. Span wise Strouhal number, S, variation and time evolution of the lift coefficient, CL, 
acting on a transversely oscillating flexible circular cylinder subjected to a sheared onset flow. 

undoubtedly play a significant role in the dynamics of the vortex excited cylinder at low 
Reynolds numbers. 

Cellular shedding in the wake of the three-dimensional circular cylinder, when subject to 
a sheared onset flow, was observed. Despite the shear, the transverse vibrations of the 
cylinder were seen to correlate the vortex shedding over a substantial proportion of the 
body's length whilst towards its ends little synchronization was observed. 
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